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Summary

We describe a strategy to assess the effect of an exposure (e.g. a disease, a ge-
netic factor) on several outcomes (e.g. psychological outcomes, the binding potential
measured in several brain regions) while accounting for possible risk factors and con-
founders. This strategy, called multiple univariage regressions strategy, models the
relationship between each outcome and the exposure using a separate model. Once
the models have been correctly fitted, a global test can be used to test whether
there is any effect of the exposure on the outcomes. After that, multiple tests are
performed to test outcome-specific effects of the exposure where the Dunnett ad-
justment is used to control the type 1 error (Pipper et al., 2012). An adjustment is
used to improved the control of the type 1 error in small sample sizes (e.g. n<100).
This adjustment has been shown to beneficial in several settings (using simulation
studies) but does not always perfectly control the type 1 error rate. It is advised to
check that validity of the adjustment when using very small samples or models with
many parameters.

The proposed strategy can be used with any type of outcomes for which a can
fit a model with asymptotically linear estimators (Tsiatis (2007), section 3). This
includes generalized linear model or Cox models. It makes it very flexible and the
strategy makes only few assumptions on the joint distribution. The drawback is that
it is not the most efficient approach. For instance modelling the joint distribution
of the outcomes, e.g. using a latent variable model / mixed model in the case of
normally distributed outcomes, will be a more efficient strategy. Another limitation
is that with the proposed approach a treatment effect specific to each outcome will
be estimated, while in some context the investigator may want to constrain the
treatment effect to be the same for some outcomes. Finally, to be feasible the strategy
requires the number of outcomes to be not too large (<100) and smaller than the
number of observations (low-dimensional setting).
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This document we aim at giving a basic understanding of the strategy and how
to implement it. In particular, we don’t claim that the proposed strategy is valid or
optimal results in every application. We start by simulating some data in section 1.
Section 2 is a summary of important aspects in applied statistics. Finally section 3
describe the multiple univariage regressions strategy.
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1 Simulation of the data
To be able to assess the validity of the proposed strategy, we will use simulated data
containing:

• a variable identifying each patient: Id

• 10 outcomes per patient: Y1 to Y10.

• 3 possible exposures per patient: age that is not related to the outcomes, BMI
that has the same effect on all outcomes, and MDI that has a different effect
per outcome.

We use the lvm function from the lava package to define these variables:
m.sim <- lava::lvm(Y1 ∼ 0*age + 0.25*BMI + 0.1*MDI + 1*eta,

Y2[0:2] ∼ 0*age + 0.25*BMI + 0.2*MDI + 2*eta,
Y3 ∼ 0*age + 0.25*BMI + 0.15*MDI + 3*eta,
Y4[0:0.5] ∼ 0*age + 0.25*BMI + 0.175*MDI + 1*eta,
Y5[0:3] ∼ 0*age + 0.25*BMI + 0.075*MDI + 2*eta
)

transform(m.sim, Id ∼ eta) <- function(x){paste0("Subj",1:NROW(x))}
categorical(m.sim, labels = c("male","female")) <- ∼ Gender
distribution(m.sim, ∼age) <- gaussian.lvm(mean = 35, sd = 5)
distribution(m.sim, ∼BMI) <- gaussian.lvm(mean = 22, sd = 3)
distribution(m.sim, ∼MDI) <- gaussian.lvm(mean = 20, sd = 5)
latent(m.sim) <- ∼eta

From the code above we can see that the variance of the outcomes differs between
outcomes and that the correlation between pairs of outcomes is also variable. We
now simulate data using lava::sim:
set.seed(10)
dfW <- lava::sim(m.sim, n = 50, latent = FALSE)

We round the values to 2 digits:
digit.cols <- c("age","BMI","MDI",paste0("Y",1:5))
dfW[,digit.cols] <- round(dfW[,digit.cols],2)

and re-order its columns:
dfW <- dfW[,c("Id","Gender",digit.cols)]
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We can now display first lines of the dataset:
head(dfW)

Id Gender age BMI MDI Y1 Y2 Y3 Y4 Y5
1 Subj1 female 30.57 21.76 25.82 7.64 8.73 7.72 10.42 8.44
2 Subj2 female 41.36 25.55 12.38 7.11 8.79 6.99 8.45 8.26
3 Subj3 male 26.97 28.56 7.41 7.88 9.89 13.51 10.79 7.90
4 Subj4 female 40.61 23.22 16.46 8.99 14.38 13.82 11.44 9.75
5 Subj5 female 45.79 19.78 18.56 7.60 8.77 8.38 7.94 6.17
6 Subj6 female 37.14 16.13 17.82 6.99 9.97 6.74 8.29 8.78
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2 Statistics: definitions and notations

2.1 Variables
We can differentiate several types of random variables: outcomes, exposure, risk
factors, confounders, and mediators. To explicit the difference between these types of
variables we consider a set of random variables (Y,E,X1, X2,M) whose relationships
are displayed on Figure 1:

• outcome (Y ): random variables that are observed with noise. It can be for
instance the 5HT-4 binding in a specific brain region. When considering several
outcomes we will denote in bold variable that stands for a vector of random
variables: Y = (Y1, Y2, . . . , Ym). This happens for instance when studying the
binding in several brain regions. In such a case we expect the outcomes to be
correlated.

• exposure (E): a variable that may affect the outcome or be associated with
the outcome and we are interested in studying this effect/association. It can
for instance be a genetic factor that is hypothesized to increase the 5HT-4
binding, or a disease like depression that is associated with a change in binding
(we don’t know whether one causes the other or whether they have a common
cause, e.g. a genetic variant).

• risk factor/confounder (X1, X2): a variable that may affect the outcome or
be associated with the outcomes but we are not interested in studying their
effect/association. Risk factors (denoted by X1) are only associated with the
outcomes and confounders that are both associated with the outcome and the
exposure. We usually need to account for confounders the statistical model
in order to obtain unbiased estimates while accounting for risk factors only
enables to obtain more precise estimates (at least in linear models).

• mediator (M): a variable that modulate the effect of the exposure, i.e. stands
on the causal pathway between the exposure and the outcome. For instance,
the permeability of the blood-brain barrier may modulate the response to drugs
and can act as a mediator. It is important to keep in mind that when we are
interested in the (total) effect of E on Y , we should not adjust the analysis on
M1. Doing so we would remove the effect of E mediated by M and therefore
bias the estimate of the total effect (we would only get the direct effect).

In the following we will assume that we do not measure any mediator variable
and therefore ignore this type of variable. Also we will call covariates the variables
E,X1, X2.

1This may not be true in specific types of confounding but we will ignore that.
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Figure 1: Path diagram relating the variables Y, E, M, X1 and X2
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2.2 Assumptions
We can distinguish two types of assumptions:

• causal assumptions: saying which variables are related and in which direc-
tion. This can be done by drawing a path diagram similar to Figure 1. In
simple univariate models it may seems unnecessary to draw the path diagram
since the system of variables is very simple to visualize. In multivariate model,
it is often very useful to draw it. Some of these assumptions are untestable,
e.g. often we cannot decide whether it is E that impacts Y or whether it is Y
that impacts E just based on the data.

• modeling assumptions: specifying the type of relationship between variables
(e.g. linear) and the marginal or joint distribution (e.g. Gaussian). Often these
assumptions can be tested and relaxed using a more flexible model. While
appealing, there are some drawbacks with using a very flexible model: more
data are needed to get precise estimates and the interpretation of the results
is more complex.

2.3 Statistical model
A statistical modelM is set of possible probability distributions. For instance when
we fit a Gaussian linear model for Y1 with just an interceptM = {N (µ, σ2) ;µ ∈ R, σ2 ∈ R+}:
M is the set containing all possible univariate normal distributions.

2.4 Model parameters
The model parameters are the (non random) variables that enable the statistical
model to "adapt" to different settings. They will be denoted Θ. They are the one that
are estimated when we fit the statistical model using the data or that we specify when
we simulate data. In the previous example, we could simulate data corresponding to
a Gaussian linear model using the rnorm function in R:
rnorm

function (n, mean = 0, sd = 1)
.Call(C_rnorm, n, mean, sd)
<bytecode: 0x88d8050>
<environment: namespace:stats>

We would need to specify:

• n the sample size

• Θ = (µ, σ2) the model parameters, here µ corresponds to mean and σ to sd.
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The true model parameters are the model parameters that have generated the
observed data. They will be denoted Θ0. For instance if in reality the binding
potential is normally distributed with mean 5 and variance 22 = 4, then Θ0 =
(µ0, σ

2
0) = (5, 4). Then doing our experiment we observed data such as:

set.seed(10)
Y_1.XP1 <- rnorm(10, mean = 5, sd = 2)
Y_1.XP1

[1] 5.037492 4.631495 2.257339 3.801665 5.589090 5.779589 2.583848 4.272648 1.746655 4.487043

If we were to re-do the experiment we would observe new data but Θ0 would not
change:
Y_1.XP2 <- rnorm(10, mean = 5, sd = 2)
Y_1.XP2

[1] 7.203559 6.511563 4.523533 6.974889 6.482780 5.178695 3.090112 4.609699 6.851043 5.965957

The estimated parameters are the parameters that we estimate when we fit the
statistical model. They will be denoted Θ̂. We usually try to find parameters whose
value maximize the chance of simulating the observed data under the estimated
model (maximum likelihood estimation, MLE). For instance in the first experiment
all values are positive so we would not estimate a negative mean value. In our
example, µ̂ the MLE of µ reduces to the empirical average and σ̂2 the MLE of σ2 to
the empirical variance:
Theta_hat.XP1 <- c(mu_hat = mean(Y_1.XP1),

sigma2_hat = var(Y_1.XP1))
Theta_hat.XP1

mu_hat sigma2_hat
4.018686 1.959404

Clearly the estimated coefficients vary across experiments:
Theta_hat.XP2 <- c(mu_hat = mean(Y_1.XP2),

sigma2_hat = var(Y_1.XP2))
Theta_hat.XP2

mu_hat sigma2_hat
5.739183 1.799311
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2.5 Parameter of interest
The statistical model may contain many parameters, most of them are often not
of interest but are needed to obtain valid estimates (e.g. account for confounders).
In most settings, the parameter of interest is one (or several) model parameter(s) -
or simple transformation of them. For instance if we are interested in the average
binding potential in the population our parameter of interest is µ.

Often, the aim of a study is to obtain the best estimate of the parameter of
interest µ. Best means:

• unbiased: if we were able to replicate the study many times, i.e. get sev-
eral estimates µ̂1, µ̂2, . . . , µ̂K , the average estimate < µ̂ >= µ̂1+µ̂2+...+µ̂K

K
would

coincide with the true one µ0.

• minimal variance: if we were able to replicate the study many times, the
variance of the estimates (µ̂1−<µ̂>)2+...+(µ̂K−<µ̂>)2

K−1 should be as low as possible.

There will often be a trade-off between these two objectives. A very flexible
method is more likely to give an unbiased estimate (e.g. being able to model non-
linear relationship) at the price of greater uncertainty about the estimates. Often we
favor unbiasedness over minimal variance. Indeed, if several studies are published
with the same parameter of interest, one can pool the results to obtain an estimate
with lower variance. Note that we have no guarantee that it will reduce the bias.

2.6 Contrast matrix
Consider a linear model:
e.lm <- lm(Y1 ∼ Gender + age + MDI, data = dfW)
e.lm

Call:
lm(formula = Y1 ~ Gender + age + MDI, data = dfW)

Coefficients:
(Intercept) Genderfemale age MDI

4.77626 -0.02049 -0.02030 0.16403

Denote for the i − th patient its outcome value by Yi (can be any real number), its
gender value by Genderi (can be "Male" or "Female"), its age value by agei (can be
60, 35, or 26), and its BMI value by BMIi. Mathematically, this linear model can
be written:

Yi =α + βGender ∗ 1Genderi=”Female” + βAge ∗ Agei + βMDI ∗MDIi + εi
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When dealing with many parameters it is convenient to define the null hypothesis
via a contrast matrix. An example of null hypothesis is:

(H0) βMDI,0 = 0

If we consider Θ = (α, βGender, βage, βMDI), this null hypothesis can be equivalently
written:

c = [0 0 0 1]

such that:

(H0) cΘᵀ
0 = 0

Indeed

cΘᵀ
0 = 0 ∗ α0 + 0 ∗ βGender,0 + 0 ∗ βage,0 + 1 ∗ βMDI,0 = βMDI,0

An example where the contrast matrix is useful is

• when one wish to test linear combination of parameters, e.g. consider the null
hypothesis where the added risk when being a female instead of a male is the
same as being 5 years older:

(H0) 5βage,0 = βGender,0

Here the contrast matrix would be:

c = [0 5 − 1 0]

• when one wish to test several hypotheses simultaneously, e.g. consider the null
hypothesis:

(H0) βage,0 = 0 or βMDI,0 = 0

Here the contrast matrix would be:

C =
[
0 0 1 0
0 0 0 1

]
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In R, the method createContrast from the lavaSearch2 package helps to define
the contrast matrix:
library(lavaSearch2)
Clin <- createContrast(e.lm, par = c("5*age - Genderfemale = 0"),

add.variance = FALSE, rowname.rhs = FALSE)
Clin$contrast

(Intercept) Genderfemale age MDI
Genderfemale - 5*age 0 1 -5 0

Csim <- createContrast(e.lm, par = c("age = 0","MDI = 0"),
add.variance = FALSE, rowname.rhs = FALSE)

Csim$contrast

(Intercept) Genderfemale age MDI
age 0 0 1 0
MDI 0 0 0 1

Then the contrast matrix can be send to the function glht from the multcomp
package to obtain p-values and confidence intervals:
library(multcomp)
elin.glht <- glht(e.lm, linfct = Clin$contrast)
summary(elin.glht)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = Y1 ~ Gender + age + MDI, data = dfW)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

Genderfemale - 5*age == 0 0.0810 0.5364 0.151 0.881
(Adjusted p values reported -- single-step method)
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esim.glht <- glht(e.lm, linfct = Csim$contrast)
summary(esim.glht)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = Y1 ~ Gender + age + MDI, data = dfW)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

age == 0 -0.02030 0.04250 -0.478 0.86315
MDI == 0 0.16403 0.04051 4.049 0.00039 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
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3 Multivariate analysis using multiple univariate
linear regressions

We want to simultaneously test the effect of MDI on five outcomes. To achieve it,
we fit separately for each outcome a univariate linear regression. Mathematically the
model can be written:

Y1 = αY1 + βY1,ageage+ βY1,BMIBMI + βY1,MDIMDI + εY1

Y2 = αY2 + βY2,ageage+ βY2,BMIBMI + βY2,MDIMDI + εY2

Y3 = αY3 + βY3,ageage+ βY3,BMIBMI + βY3,MDIMDI + εY3

Y4 = αY4 + βY4,ageage+ βY4,BMIBMI + βY4,MDIMDI + εY4

Y5 = αY5 + βY5,ageage+ βY5,BMIBMI + βY5,MDIMDI + εY5


where ε1, ε2, ε3, ε4, ε5 are the residual errors. The residuals are assumed to have zero
mean and finite variance, respectively, σ2

1, σ
2
2, σ

2
3, σ

2
4, σ

2
5. Here we make no assumption

on the correlation structure between the residuals.

3.1 Fitting multiple linear regression in R
We can estimate all the 5 models and store them into a list:
ls.lm <- list(Y1 = lm(Y1 ∼ age + BMI + MDI, data = dfW),

Y2 = lm(Y2 ∼ age + BMI + MDI, data = dfW),
Y3 = lm(Y3 ∼ age + BMI + MDI, data = dfW),
Y4 = lm(Y4 ∼ age + BMI + MDI, data = dfW),
Y5 = lm(Y5 ∼ age + BMI + MDI, data = dfW)
)

3.2 Interpretation of the regression coefficients
Same as in the univariate case (see https://bozenne.github.io/doc/2020-09-17-linearModel/
post-linearModel.pdf).

3.3 Diagnostics tools for univariate linear regression in R
Same as in the univariate case (see https://bozenne.github.io/doc/2020-09-17-linearModel/
post-linearModel.pdf). Model checking needs to be done for each outcome.
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3.4 Hypothesis testing
We now want to test:

(H0) βY1,MDI,0 = 0 and βY2,MDI,0 = 0 and βY3,MDI,0 = 0 and βY4,MDI,0 = 0 and βY5,MDI,0 = 0

The p-values returned by summary are no more valid since we are performing
multiple tests (here 5 tests). A basic solution would be to collect the p-values:
vec.p.value <- unlist(lapply(ls.lm, function(x){

summary(x)$coef["MDI","Pr(>|t|)"]
}))

and adjust them for multiple comparisons using Bonferroni:
p.adjust(vec.p.value, method = "bonferroni")

Y1 Y2 Y3 Y4 Y5
3.299432e-04 4.218369e-02 3.552579e-01 2.276690e-07 8.565878e-01

While easy to use this approach tends to be too conservative (i.e. give to large
p-values) when the test statistics are correlated. This is usually the case when the
outcomes are correlated. We will therefore use a more efficient correction called the
Dunnett approach. First we need to define the null hypothesis that we want to test
via a contrast matrix. For simple null hypotheses like the one we are considering in
this example, we can use the function createContrast that will create the matrix
for us:
resC <- createContrast(ls.lm, var.test = "MDI", add.variance = TRUE)

This function defines for each model the appropriate contrast matrix:
resC$mlf

$Y1
(Intercept) age BMI MDI sigma2

MDI 0 0 0 1 0

$Y2
(Intercept) age BMI MDI sigma2

MDI 0 0 0 1 0

$Y3
(Intercept) age BMI MDI sigma2

MDI 0 0 0 1 0

$Y4

14



(Intercept) age BMI MDI sigma2
MDI 0 0 0 1 0

$Y5
(Intercept) age BMI MDI sigma2

MDI 0 0 0 1 0

attr(,"class")
[1] "mlf"

and right hand side of the null hypothesis:
resC$null

Y1: MDI Y2: MDI Y3: MDI Y4: MDI Y5: MDI
0 0 0 0 0

We will now call glht2 to perform the adjustment for multiple comparisons but
first we need to convert the list into a mmm object:
class(ls.lm) <- "mmm"
e.glht_lm <- glht2(ls.lm, linfct = resC$contrast, rhs = resC$null)
e.glht_lm

General Linear Hypotheses

Linear Hypotheses:
Estimate

Y1: MDI == 0 0.15104
Y2: MDI == 0 0.16770
Y3: MDI == 0 0.14907
Y4: MDI == 0 0.19860
Y5: MDI == 0 0.09806

We can now correct for multiple comparisons using the (single-step) Dunnett
approach:
summary(e.glht_lm, test = adjusted("single-step"))

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

Y1: MDI == 0 0.15104 0.03441 4.389 <0.001 ***
Y2: MDI == 0 0.16770 0.06093 2.752 0.0286 *
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Y3: MDI == 0 0.14907 0.08067 1.848 0.1996
Y4: MDI == 0 0.19860 0.03039 6.535 <0.001 ***
Y5: MDI == 0 0.09806 0.07057 1.390 0.4208
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Adjusted p values reported -- single-step method)

Note that the p-value for the global test equals to the smallest p-value. This
means that we reject the global null hypothesis whenever we reject the null hypothesis
for any of the outcome (after adjustment for multiple comparisons!).

For comparison one can change the argument in adjust to apply the Bonferroni
adjustment:
summary(e.glht_lm, test = adjusted("bonferroni"))

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

Y1: MDI == 0 0.15104 0.03441 4.389 0.00033 ***
Y2: MDI == 0 0.16770 0.06093 2.752 0.04218 *
Y3: MDI == 0 0.14907 0.08067 1.848 0.35526
Y4: MDI == 0 0.19860 0.03039 6.535 2.28e-07 ***
Y5: MDI == 0 0.09806 0.07057 1.390 0.85659
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Adjusted p values reported -- bonferroni method)

Finally, confidence intervals can be obtained using the confint function:
confint(e.glht_lm)

Simultaneous Confidence Intervals

Fit: NULL

Quantile = 2.5215
95% family-wise confidence level

Linear Hypotheses:
Estimate lwr upr

Y1: MDI == 0 0.15104 0.06427 0.23782
Y2: MDI == 0 0.16770 0.01407 0.32133
Y3: MDI == 0 0.14907 -0.05434 0.35248
Y4: MDI == 0 0.19860 0.12197 0.27524
Y5: MDI == 0 0.09806 -0.07987 0.27599
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Note that by default the confint function output confidence intervals using the
(single-step) Dunnett approach.
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