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Summary
In the document we provide a brief introduction of R (sections 1, 2, 3) and to the
linear model (sections 4). We show how some of the underlying hypotheses can be
checked and what to do when there is evidence that one or several assumptions are
not met. We also introduce the notion of partial residuals (sections 5) and explain
how to compute and display them.
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1 Software
The R software can be downloaded at https://cloud.r-project.org/. R stu-
dio provide a convenient user interface that can be downloaded at https://www.
rstudio.com/products/rstudio/. In this document the R code will be display in
boxes:
1+1 ## comment about the code

[1] 2

while the R output will be displayed in dark red below the box.

When starting a fresh R session, only the core functionalities of R are available.
Additional functionalities called packages can be downloaded from the CRAN using
the command install.packages:
install.packages(pkgs = c("lava","car","nlme","ggfortify", "exact2x2",

"devtools","reshape2","Publish","officer"))

Two of the packages we need are not available on CRAN but only on Github, this is
why we also run 1:
devtools::install_github("bozenne/butils")
devtools::install_github("kkholst/gof")

After having installed the packages, one needs to load them using the command
library to use them in the current R session:
library(lava) ## simulate data, latent variable models
library(car) ## miscellaneous sfunction
library(nlme) ## mixed models
library(ggfortify) ## graphical display
library(butils) ## miscellaneous function
library(reshape2) ## wide to long format
library(gof) ## diagnostic tests
library(Publish) ## table 1
library(officer) ## export to word
library(exact2x2) ## compare proportions

1if you do not manage to install it skip that part, you should still be able to run most of the
code used in this document
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2 Data

2.1 Generation
We will use the dataset generated by the following commands:
set.seed(10)
m.lvm <- lvm(Y1[100:sigma21]∼beta*AgeC+BMI2+Gene,

Y2[110:sigma22]∼beta*AgeC+BMI2+Gene,
Y3[120:sigma23]∼beta*AgeC+0.5*BMI2+Gene)

categorical(m.lvm, K = 3) <- ∼Gene
distribution(m.lvm, ∼Age) <- uniform.lvm(20,50)
distribution(m.lvm, ∼BMI) <- gaussian.lvm(mean = 24, sd = 3)
transform(m.lvm, AgeC∼Age) <- function(x, ...){x-35}
transform(m.lvm, Id∼Age) <- function(x, ...){1:NROW(x)}
transform(m.lvm, BMI2∼BMI) <- function(x, ...){(x-24) + (x-24)^2}
latent(m.lvm) <- ∼AgeC+BMI2

p1 <- c(beta = 1, sigma21 = 1, sigma22 = 2, sigma23 = 3)
p2 <- c(beta = -1, sigma21 = 4, sigma22 = 4, sigma23 = 4)
d <- rbind(cbind(lava::sim(n = 1e2, m.lvm, latent=FALSE, p = p1), Gender = "Male"

),
cbind(lava::sim(n = 1e2, m.lvm, latent=FALSE, p = p2), Gender = "Female")
)

d$Gender <- as.factor(d$Gender)
d$Gene <- factor(d$Gene, labels = c("A","B","C"))
d$Y1 <- round(d$Y1,1)
d$Y2 <- round(d$Y2,1)
d$Age <- round(d$Age,1)
d$BMI <- round(d$BMI,1)
d <- d[,c("Id","Age","Gender","BMI","Gene","Y1","Y2","Y3")]
head(d)

Id Age Gender BMI Gene Y1 Y2 Y3
1 1 44.2 Male 23.8 A 109.1 120.8 131.7429
2 2 41.3 Male 27.5 B 123.2 133.9 136.3850
3 3 27.4 Male 30.6 A 140.6 154.0 136.1408
4 4 35.3 Male 25.2 C 104.4 116.2 125.0175
5 5 37.1 Male 21.8 A 105.0 113.2 123.6257
6 6 29.9 Male 18.1 C 125.9 136.2 131.7966

We will then export the data in a .csv format using
write.csv(d, "data.csv", row.names = FALSE)

Note: in "real life" studies, this step does not exist. Instead an experiment is
performed where some data are collected.
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2.2 Data management

2.2.1 Working directory

The working directory is where R, by default, look for files to import and export
data or figures. The current working directory can be accessed using:
path <- getwd()
path

[1] "/home/brice/Documents/GitHub/bozenne.github.io/doc/2020-09-17-linearModel"

It can be changed using the function setwd():
path2 <- "∼"
setwd(path2)

We can check that the working directory has indeed changed calling again getwd():

getwd()

[1] "/home/brice"

We move back to the original working directory doing:
setwd(path)

2.2.2 Importing the data

It is a good idea to start by checking that the working directory contains the data
we want to import. For instance the file data.csv is storing the data, we can use:
file.exists("data.csv")

[1] TRUE

We can also list all files in the current directory with a .csv extension using:
list.files(pattern = ".csv")

[1] "data.csv"
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We can also display the first lines of the file using:
readLines("data.csv")[1:3]

[1] "\"Id\",\"Age\",\"Gender\",\"BMI\",\"Gene\",\"Y1\",\"Y2\",\"Y3\""
[2] "1,44.2,\"Male\",23.8,\"A\",109.1,120.8,131.742898261202"
[3] "2,41.3,\"Male\",27.5,\"B\",123.2,133.9,136.385038040154"

We can see that the columns are separated with , and that the . indicates
the decimal values. Moreover the words such as the columns names or the subject
identities are surrounded by \" (e.g. \"Id\" stand for Id). Finally in this example
there is no missing values but if there was it is important to know how they are
encoded.

The command to import the data depends on the type of file. Here for a .csv
file we use read.csv. Luckily the default arguments sep, dec, quote are correctly
specified:
args(read.csv)

function (file, header = TRUE, sep = ",", quote = "\"", dec = ".",
fill = TRUE, comment.char = "", ...)

NULL

The argument header set to TRUE indicates that the first line of the dataset
contains the column names (and not the actual data). The ... indicates there
are additional arguments that are not shown here (see the documentation using
help(read.csv)). For instance, in presence of missing values, one would need to
specify the argument na.string. Here it is sufficient to do:
dfW <- read.csv("data.csv")

Other functions exists to import other types of data, e.g. read.table for .txt
files, read.xlsx from the xlsx package for .xlsx file, or read.spss from the foreign
package for spss data files. One should always inspect if R has correctly imported
the data, e.g. using:
str(dfW)

’data.frame’: 200 obs. of 8 variables:
$ Id : int 1 2 3 4 5 6 7 8 9 10 ...
$ Age : num 44.2 41.3 27.4 35.3 37.1 29.9 33.1 26 43.6 43.5 ...
$ Gender: Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ BMI : num 23.8 27.5 30.6 25.2 21.8 18.1 18.1 21.2 27.6 22.1 ...
$ Gene : Factor w/ 3 levels "A","B","C": 1 2 1 3 1 3 3 1 3 3 ...
$ Y1 : num 109 123 141 104 105 ...
$ Y2 : num 121 134 154 116 113 ...
$ Y3 : num 132 136 136 125 124 ...
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In this example, the two columns contain character strings (Factor is a type of
character strings in R) and the rest contains numerical values.

2.2.3 Data processing

Often the raw data needs to be transformed before being analyzed:

• A typical example is when one need to deal with the variable:

gender <- c(1,0,1,0,1) ## what is 1? what is 0?

This is already better:
female <- c(1,0,1,0,1) ## we can guess that 1: female and 0: male

but it is a good practice in such situation to rename the actual values into some-
thing understandable:
factor(gender, levels = 0:1, labels = c("Female","Male"))

[1] Male Female Male Female Male
Levels: Female Male

• With repeated measurements per individual, one often needs to reshape his
dataset from the wide format (one line per individual) to the long format (one
line per measurement). This can be done using the melt method. The opposite
operation can be performed using dcast.

str(dfW)

’data.frame’: 200 obs. of 8 variables:
$ Id : int 1 2 3 4 5 6 7 8 9 10 ...
$ Age : num 44.2 41.3 27.4 35.3 37.1 29.9 33.1 26 43.6 43.5 ...
$ Gender: Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ BMI : num 23.8 27.5 30.6 25.2 21.8 18.1 18.1 21.2 27.6 22.1 ...
$ Gene : Factor w/ 3 levels "A","B","C": 1 2 1 3 1 3 3 1 3 3 ...
$ Y1 : num 109 123 141 104 105 ...
$ Y2 : num 121 134 154 116 113 ...
$ Y3 : num 132 136 136 125 124 ...

dfL <- reshape2::melt(dfW, id.vars = c("Id","Gender","Age","BMI","Gene"),
measure.vars = c("Y1","Y2","Y3"),
value.name = "score",variable.name = "outcome")

head(dfL)
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Id Gender Age BMI Gene outcome score
1 1 Male 44.2 23.8 A Y1 109.1
2 2 Male 41.3 27.5 B Y1 123.2
3 3 Male 27.4 30.6 A Y1 140.6
4 4 Male 35.3 25.2 C Y1 104.4
5 5 Male 37.1 21.8 A Y1 105.0
6 6 Male 29.9 18.1 C Y1 125.9

• It is often a good idea to restrict the dataset to the relevant variables (e.g.
remove genetic data if they are not of interest). It is easier to work with and
to display in the next steps. This can for instance be done by defining the
variables of interest:

keep.var <- c("Id","BMI","Y1")

We can check that the variables defined in keep.var are in df:
keep.var %in% names(dfW)

[1] TRUE TRUE TRUE

and then subset the initial dataset:
dfW.red <- dfW[,keep.var]
head(dfW.red)

Id BMI Y1
1 1 23.8 109.1
2 2 27.5 123.2
3 3 30.6 140.6
4 4 25.2 104.4
5 5 21.8 105.0
6 6 18.1 125.9

• Often after having imported the data we want to change its column names.
First we need to know the current column names. The names function can be
used to output all the column names:

names(dfW)

[1] "Id" "Age" "Gender" "BMI" "Gene" "Y1" "Y2" "Y3"

Alternatively the grep function will output any column name containing a given
string of characters:
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grep(pattern = "Y", x = names(dfW), value = TRUE)

[1] "Y1" "Y2" "Y3"

Then, we can rename columns one at a time using:
names(dfW)[names(dfW) == "Y1"] <- "baseline_score"
names(dfW)[names(dfW) == "Y2"] <- "followup_score"
names(dfW)[names(dfW) == "Y3"] <- "final_score"
head(dfW)

Id Age Gender BMI Gene baseline_score followup_score final_score
1 1 44.2 Male 23.8 A 109.1 120.8 131.7429
2 2 41.3 Male 27.5 B 123.2 133.9 136.3850
3 3 27.4 Male 30.6 A 140.6 154.0 136.1408
4 4 35.3 Male 25.2 C 104.4 116.2 125.0175
5 5 37.1 Male 21.8 A 105.0 113.2 123.6257
6 6 29.9 Male 18.1 C 125.9 136.2 131.7966

To rename several columns at the same time we can use:
old2new <- c("baseline_score" = "Y1",

"followup_score" = "Y2",
"final_score" = "Y3")

names(dfW)[match(names(old2new),names(dfW))] <- old2new
head(dfW)

Id Age Gender BMI Gene Y1 Y2 Y3
1 1 44.2 Male 23.8 A 109.1 120.8 131.7429
2 2 41.3 Male 27.5 B 123.2 133.9 136.3850
3 3 27.4 Male 30.6 A 140.6 154.0 136.1408
4 4 35.3 Male 25.2 C 104.4 116.2 125.0175
5 5 37.1 Male 21.8 A 105.0 113.2 123.6257
6 6 29.9 Male 18.1 C 125.9 136.2 131.7966

Other useful functions are tolower to convert characters to lower case and gsub
to remove a specific pattern in a character vector, e.g.:
gsub(pattern = ".", replacement = "", x = c("a..","b..."), fixed = TRUE)

[1] "a" "b"

Many of the other data processing steps are specific to each study and we won’t
discuss them in this document.

8



3 Descriptive statistics
Before doing any analysis, it is a good practice to describe the data that are to be
analyzed. The has several aims:

• check that that database contains the population of interest, i.e. in-
dividuals in the database are indeed those the we want to study and we have
all of them.

• check that the collected values are plausible, e.g. if the inclusion criteria
include that the age range is between 18 and 99 years, then one should check
that this is indeed the case.

• check that the collected values are coded as expected, e.g. age is usually
coded in years (and not in months).

• check that the collected values are distributed as expected, e.g. is there
missing values? Are the values uniformly spread? Bimodal? Concentrated at
low or high values?

Note: one should checks that for all the variables of interest. This can appear
time-consuming but can really save you time at latter stages.

• produce your table 1 i.e. a descriptive table of your cohort that is al-
most always included in an article. You can for instance use the function
univariateTable from the Publish package:

myTable1 <- univariateTable(Gender ∼ Age + BMI + Y1 + Y2 + Y3,
data = dfW)

myTable1

Variable Level Female (n=100) Male (n=100) Total (n=200) p-value
1 Age mean (sd) 33.9 (8.7) 35.1 (9) 34.5 (8.9) 0.3459
2 BMI mean (sd) 24.2 (2.6) 23.8 (3.4) 24 (3) 0.4307
3 Y1 mean (sd) 109.1 (13.8) 112.2 (17) 110.7 (15.5) 0.1606
4 Y2 mean (sd) 119.1 (13.3) 122.4 (17) 120.7 (15.4) 0.1335
5 Y3 mean (sd) 126.1 (10.7) 127 (11.5) 126.6 (11.1) 0.5601

You can also export this table in a word document with the package officer:
myTable1.doc <- body_add_table(x = read_docx(),

value = summary(myTable1))
print(myTable1.doc, target = "./Table1.docx")

To keep the code simple, we only present here a very basic application of these
tools. More complex tables with a nicer display in word can be obtain with a bit of
coding.

9



• make synthetic representations of your data using graphs or images. This
can be useful to visualize your data and help your collaborators to understand
what you have collected or what you are trying to show.

library(ggplot2)
gg <- ggplot(dfL, aes(x = BMI, y = score, color = Gender, group = Gender))
gg <- gg + geom_point()
gg <- gg + facet_wrap(∼outcome, labeller = label_both)
gg <- gg + geom_smooth(method = "lm", se = FALSE)
gg

‘geom_smooth()‘ using formula ’y ~ x’
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You can then export the figure in a folder figures using:
pdf("./figures/descriptive.pdf", width = 12)
gg + theme(text = element_text(size=25))
dev.off()

• Compare percentages when considering categorical data: the usual way
to compare the distribution of a categorical variable between two groups is to
run a Fisher test using fisher.test in the R software. It returns a p-value
and an estimate of the odd ratio with its confidence interval. For instance,
consider the following dataset:

mytable <- rbind(c(8,5), c(4,15))
dimnames(mytable) <- list(c("control","treatment"), c("-","+"))
mytable
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- +
control 8 5
treatment 4 15

The Fisher test outputs:
fisher.test(mytable)

Fisher’s Exact Test for Count Data

data: mytable
p-value = 0.02996
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

0.9953576 38.7853302
sample estimates:
odds ratio

5.622612

This approach admits two drawbacks:

• the p-value may not agree with the confidence interval of the odd ratio regarding
the rejection of the null hypothesis

• the odd ratio is a rather complex quantity to understand.

Instead one can use the function binomMeld.test (package exact2x2 ) to perform a
test on the proportions:
binomMeld.test(x1=mytable["control","+"],n1=sum(mytable["control",]),

x2=mytable["treatment","+"],n2=sum(mytable["treatment",]),
parmtype="difference")

melded binomial test for difference

data: sample 1:(5/13), sample 2:(15/19)
proportion 1 = 0.38462, proportion 2 = 0.78947, p-value = 0.05077
alternative hypothesis: true difference is not equal to 0
95 percent confidence interval:
-0.001077177 0.715576028

sample estimates:
difference (p2-p1)

0.4048583

This time the p-value is consistent with the confidence interval.
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4 Introduction to the linear model
Imagine we would like to model the age effect on the outcome, but accounting for a
possible gender and gene effect. In R we would use the lm function:
e.lm <- lm(Y1 ∼ Gender + Age + Gene + BMI, data = dfW)
e.lm

Call:
lm(formula = Y1 ~ Gender + Age + Gene + BMI, data = dfW)

Coefficients:
(Intercept) GenderMale Age GeneB GeneC BMI

91.5610 3.7984 -0.1358 7.8329 5.8120 0.7365

Denote for the i− th patient its outcome value by Yi (can be any real number),
its gender value by Genderi (can be "Male" or "Female"), its gene value by Genei
(can be "A", "B", or "C"), and its BMI value by BMIi. Mathematically, this linear
model can be written:

Yi =α + βGender ∗ 1Genderi=”Male” + βAge ∗ Agei + βGeneB ∗ 1Genei=”B” + βGeneC ∗ 1Genei=”C”

+ βBMI ∗BMIi + εi

where β = (α, βGender, βAge, βGeneB, βGeneC , βBMI) is the vector of model parameters.
Their value is shown just above (e.g. α = 21.3988). Here 1. denotes the indicator
function taking value 1 if "." is true and 0 otherwise. εi is the residual error, i.e. the
difference between the observed value and the fitted value. Consider for instance the
first individual:
d[1,]

Id Age Gender BMI Gene Y1 Y2 Y3
1 1 44.2 Male 23.8 A 109.1 120.8 131.7429

its observed value is 109.2 and we can computed its fitted value as:

Ŷ1 = α̂ + β̂Gender ∗ 0 + β̂Age48 + β̂GeneB ∗ 0 + β̂GeneC ∗ 0
= 91.5610 + 3.7984 ∗ 1− 0.1358 ∗ 44.2 + 7.8329 ∗ 0 + 5.8120 ∗ 0 + 0.7365 ∗ 23.8
= 106.8857

Here the hat on top of the β refer to the estimated coefficient.
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This can also be obtained using the fitted method in R (the discrepancy comes
from rounding the coefficient values at the 4th digit):
fitted(e.lm)[1]

1
106.8839

Often, for conciseness, this linear model can be abbreviated as:

Yi = Xiβ + εi

where Xi = (1,1Genderi=”Male”, Agei,1Genei=”B”,1Genei=”C”) and Xiβ is the matrix
product between the row vector Xi and the column vector β. More generally, i.e.
at the population level instead of the individual level, we also write Y = Xβ + ε to
describe the relationship between the random variables Y , X, ε.

4.1 Assumptions
A linear model Y = Xβ + ε is a model studying the effects (β) of covariates (X) on
the expected value of the outcome Y . Maximum likelihood (ML) estimation leads
to unbiased estimates of β if the following assumptions are satisfied:

• (A0): no unobserved confounders.

• (A1): E [Yi|X] = Xiβ correct specification of the functional form of the co-
variates.

• (A2): identically distributed and (A3) independent residuals.
Under the normality assumption, it simplifies to (A2) homoschedasticity Var [Yi|X] =
σ2 and (A3) uncorrelatedness ∀i 6= j, Cov [Yi, Yj|X] = 0.

While not needed per se, the assumption of:

• (A4): normally distributed residuals is often mentioned since (i) normality of
the estimates holds exactly in finite samples (instead of asymptotically) i.e.
p-values/CIs are reliable even in small samples, (ii) it ensures that MLE is the
best estimation procedure, (iii) checking (A2) and (A3) is simplified.

Additional assumptions (automatically fullfield under normality) are typically nec-
essary to ensure reliable and interpretable estimates:

• (A4-bis): approximately symmetric and unimodal - otherwise modeling the
expected value (aka the mean value) may not be very relevant.

• (A5): absence of outliers - otherwise the estimates may be very sensitive to
the value of a few observations which is often undesirable.
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4.2 Interpretation of the regression coefficients
If the assumptions (A1-A3), βage reflect the association between age and the outcome.
This means that for fixed gene, gender, and BMI, if we observe an individual A one
year older than an individual B then we would also expect that its value for the
outcome Y to differ by βage.
If we in addition make causal assumptions (mainly A0: no unobserved confounder)
then we can interpret βAge as the effect of age on the outcome. This means that if
we could change the age of an individual by one unit then its variation in outcome
should be βage.

4.3 Hypothesis testing
We want to formally test whether there is an effect of age on the outcome. We first
need to make the distinction between:

• β0
age the true but unknown age effect (may be 1.5)

• β̂age the estimated age effect (here 1.5326 using maximum likelihood)

We would like to test the null hypothesis of no age effect:

(H0) β0
age = 0

Since the parameters are estimated by ML and assuming that the model is correctly
specified, we know that the asymptotic distribution of the parameter is Gaussian.
This means that for large sample size, the fluctuation of the estimated values follows
a normal distribution. For instance:

β̂age ∼
n→∞

N
(
β0
age, σ

2
βage

)
where σ2

βage
is the variance of the MLE, i.e. the uncertainty surrounding our estima-

tion of the association. It follows that:

tβage =
β̂age − β0

age

σ2
βage

∼
n→∞

N (0, 1) (1)

So under the null hypothesis of no association between the outcome and the exposure
the statistic tβage should follow a standard normal distribution. Very low or very large
values are unlikely to be observed and would indicate that the null hypothesis does
not hold. This is called a (univariate) Wald test.
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The result of this tests can be obtained using the summary method 2:
summary(e.lm)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 91.5609817 9.4890315 9.649139 3.049271e-18
GenderMale 3.7984283 2.1504309 1.766357 7.890869e-02
Age -0.1358252 0.1222051 -1.111452 2.677492e-01
GeneB 7.8328783 2.6882498 2.913746 3.990606e-03
GeneC 5.8120279 2.5395657 2.288591 2.318060e-02
BMI 0.7364696 0.3583963 2.054903 4.122862e-02

95% confidence intervals for the model parameters can then be obtained using
the confint method:
confint(e.lm)

2.5 % 97.5 %
(Intercept) 72.84607298 110.275890
GenderMale -0.44279672 8.039653
Age -0.37684645 0.105196
GeneB 2.53093057 13.134826
GeneC 0.80332490 10.820731
BMI 0.02961616 1.443323

Note that based on the estimate and standard errors, we could compute the
p-value ourself:
beta <- summary(e.lm)$coef[,"Estimate"]
sigma <- summary(e.lm)$coef[,"Std. Error"]
df <- df.residual(e.lm)
t.abs <- abs(beta/sigma)
rbind(asymptotic = 2*(1-pnorm(t.abs)),

corrected = 2*(1-pt(t.abs, df = df)))
cat("degrees of freedom:", df,"\n")

(Intercept) GenderMale Age GeneB GeneC BMI
asymptotic 0 0.07733600 0.2663737 0.003571198 0.02210311 0.03988840
corrected 0 0.07890869 0.2677492 0.003990606 0.02318060 0.04122862
degrees of freedom: 194

2In reality R is automatically performing a correction that improves the control of the type 1
error. Indeed we usually don’t know σ2

βage
and plugging-in its estimate in equation (1) modifies the

distribution of tβage
in small samples. The correction uses a Student’s t distribution instead of a

Gaussian distribution.
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and the confidence intervals:
cbind(normLower = beta + qnorm(0.025) * sigma,

normUpper = beta + qnorm(0.975) * sigma,
tLower = beta + qt(0.025, df = df) * sigma,
tUpper = beta + qt(0.975, df = df) * sigma)

normLower normUpper tLower tUpper
(Intercept) 72.96282173 110.1591416 72.84607298 110.275890
GenderMale -0.41633879 8.0131954 -0.44279672 8.039653
Age -0.37534289 0.1036925 -0.37684645 0.105196
GeneB 2.56400558 13.1017511 2.53093057 13.134826
GeneC 0.83457057 10.7894853 0.80332490 10.820731
BMI 0.03402571 1.4389134 0.02961616 1.443323

4.4 Checking assumptions made when fitting a linear model

4.4.1 (A0): no unobserved confounders

(A0) is in general impossible to check.

4.4.2 (A1): correct specification of the functional

(A1) can be (artificially) decomposed into two part:

• in absence of interaction, is the effect of the continuous variables cor-
rectly modeled? Typically it is modeled as a linear effect and the question
is is there a non-linear effect. We can look at the plot of the covariate vs. the
residuals and search for any trend:

gg <- ggplot(d, aes(x = BMI, y = residuals(e.lm)))
gg <- gg + geom_point() + geom_smooth() + ylab("residuals")
gg

‘geom_smooth()‘ using method = ’loess’ and formula ’y ~ x’
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(similar plots can be automatically generated using the crPlots or ceresPlots
function from the car package). A p-value for testing the correct specification of the
functional form for the covariate can be obtained using the cumres function from
the gof package:
cumres(e.lm, variable = "BMI")

p-value(Sup) p-value(L2)
BMI 0 0

Based on 1000 realizations.

Remedies: if a trend is found, a possible remedy is to use splines to model the
non-linear relationship, e.g.
e.gam <- mgcv::gam(Y1 ∼ Gender + Age + Gene + s(BMI), data = dfW)

In this simple example, it looks like a quadratic function of BMI would be
enough:
e.lm.1 <- lm(Y1 ∼ Gender + Age + Gene + BMI + I(BMI^2), data = dfW)
cumres(e.lm.1, variable = "BMI")
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p-value(Sup) p-value(L2)
BMI 0.268 0.444

Based on 1000 realizations.

Note that this type of test is not appropriate to detect missing interaction:
cumres(e.lm.1, variable = "Age")

p-value(Sup) p-value(L2)
Age 0.074 0.768

Based on 1000 realizations.

while the display of the residuals can be informative
gg <- ggplot(dfW, aes(x = Age, y = residuals(e.lm.1))) + geom_point() +

geom_smooth()
gg
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• checking for interactions is hard because the number of possible interac-
tions grows quickly with the number of covariates. A typical test would be to
compare a model with interactions to a model without interactions:

e.lm.2 <- update(e.lm, Y1 ∼ Gender*Age + Gene + BMI + I(BMI^2))
anova(e.lm.1, e.lm.2)

Analysis of Variance Table

Model 1: Y1 ~ Gender + Age + Gene + BMI + I(BMI^2)
Model 2: Y1 ~ Gender + Age + Gene + BMI + I(BMI^2) + Gender:Age

Res.Df RSS Df Sum of Sq F Pr(>F)
1 193 16345.2
2 192 509.8 1 15835 5963.5 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that in that case a test on the cumulative residuals process would not detect
any issue:
cumres(e.lm.1, variable = "predicted")

p-value(Sup) p-value(L2)
predicted 0.664 0.778

Based on 1000 realizations.

Remedies: this is a harder situation. When only few interactions are considered, a
possible strategy would be to include all of them and perform backward selection. But
then the p-values returned by lm for the parameters related to the interactions (here
Gender, Age, and Gender:Age) will often be incorrect. Otherwise adding all possible
interactions and use a lasso/group-lasso penalty with post selection inference. If the
aim is prediction (and no inference), use more flexible but less interpretable models
(e.g. random forest).

• A last possible issue arise when the outcome variable is not studied on
the right scale. Consider the model using a square root transformation:

e.sqrt.lm <- lm(sqrt(Y1) ∼ Gender*Age + Gene + BMI + I(BMI^2), data = dfW)

19



Diagnostic plots indicates lack of fit (first line, first plot) and heteroschedasticity
(second line first plot):
autoplot(e.sqrt.lm)
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We can use cumres and see that the link function seems inappropriate:
cumres(e.sqrt.lm, variable = "predicted")

p-value(Sup) p-value(L2)
predicted 0 0.001

Based on 1000 realizations.
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In that case a box-cox transformation can be useful as it suggests to square the
outcome:
M <- MASS::boxcox(e.sqrt.lm, lambda = seq(-1,4,by=0.1))
M$x[which.max(M$y)]

[1] 1.828283

Note that it seems to sometimes also suggest weird transformations:
M <- MASS::boxcox(lm(log(Y1) ∼ Gender*Age + Gene + BMI + I(BMI^2), data =

dfW), lambda = seq(-10,10,by=0.1))
M$x[which.max(M$y)]

[1] 5.4

(the results should be 0)

4.4.3 (A4): normal distribution

(A4) can be tested using an histogram of the standardized residuals:
hist(residuals(e.lm.2, type = "pearson"), freq = FALSE, breaks = 10)
curve(dnorm,-3,3,add =TRUE,col = "red")

Histogram of residuals(e.lm.2, type = "pearson")

residuals(e.lm.2, type = "pearson")
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where the histogram should be close to the shape of the standard normal distri-
bution (red curve). We could reject (A4) but accept (A4-bis) in the case where
the distribution has heavy tails but is still unimodal and symmetric. While intuitive,
this method is sensitive to the discretization of the residuals values (argument break)
and a qq-plot is often preferred:
qqtest::qqtest(residuals(e.lm.2, type = "pearson"))

qqtest
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Here the points should follow a straight line and be within the shaded area. We
could reject (A4) but accept (A4-bis) in the case where deviation to the straight line
mostly arise in the tails. Statistical test (like a shapiro test) are not recommended
since they do not enable us to know whether we reject (A4) or (A4bis).

Remedies: when (A4) is rejected but not (A4-bis), the main concern is about
the validity of the traditional asymptotic results. This is not critical in a linear
regression where our variance estimator is consistent and the central limit theorem
ensures asymptotic normality: instead of having exact p-values/CI they are only
asymptotically valid. If the sample size is not too small they will hold; otherwise
permutation test are a good alternative. In more complex models, robust standard
errors or non-parametric bootstrap can be used for large enough samples to obtain
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p-values/CI robust to deviation to the normal distribution.
A more serious problem arises when (A4-bis) is rejected. In that case one should
consider whether the expected outcome is really relevant. Alternative approaches in-
clude transformation of the outcome or use of alternative regression models (quantile
regression, probability index models, finite mixture models).

Note 1: the type argument indicates the type of residuals we want to extract.
Raw residuals are ε̂ = Y − Ŷ , i.e. the observed minus the fitted values. In models
more complex than a univariate linear regression, the raw residuals may not be iid.
This makes it difficult to assess the validity of the assumptions. In such cases we
display instead diagnostics for normalized residuals that, if the assumptions of the
model are correct, should follow a standard normal distribution.

Note 2: an alternative to the qqtest function is the qqPlot function from the
car package.

4.4.4 (A2): Homeschedasticity

Homoschedasticity can be inspected by displaying the residuals along the fitted val-
ues:
d$residuals <- residuals(e.lm.2, type = "pearson")
d$fitted <- fitted(e.lm.2)
gg <- ggplot(d, aes(x = fitted)) + ylab("residuals")
gg <- gg + geom_smooth(aes(y = residuals^2-1))
gg <- gg + geom_point(aes(y = residuals))
gg

23



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

−8

−4

0

4

100 125 150 175
fitted

re
si

du
al

s

(see also the function spreadLevelPlot from the car package). It is also possible
to have a global statistical test (Breusch-Pagan test):
ncvTest(e.lm.2)

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 0.2765166, Df = 1, p = 0.59899

Alternatively one can look along a specific regressor:
gg <- ggplot(d, aes(x = Gender, y = residuals)) + ylab("residuals")
gg <- gg + geom_boxplot()
gg
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or investigate look how the squared residuals relates to the regressors:
summary(lm(residuals(e.lm.2)^2 ∼ Gender + Age + Gene + BMI, data = dfW))$

coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.27861402 3.07851696 1.0649979 2.882006e-01
GenderMale -2.92345176 0.69766213 -4.1903546 4.227552e-05
Age -0.03880792 0.03964689 -0.9788388 3.288787e-01
GeneB 0.41620970 0.87214618 0.4772247 6.337393e-01
GeneC 0.18989247 0.82390876 0.2304775 8.179636e-01
BMI 0.07868374 0.11627415 0.6767088 4.993968e-01

Remedies: in presence of global heteroschadasticity (first graph), transforming
the outcome can be a solution. Otherwise one should reflect about possible source
of heteroschadasticity (e.g. correlated observations, mixture of populations) and
model them. When the heteroschadasticity is related to a single variable, one can
for instance use the gls function to model this variance:
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e.gls <- gls(Y1 ∼ Gender + Age + Gene + BMI + I(BMI^2) + Gender:Age,
data = dfW,
weight = varIdent(form=∼1|Gender))

summary(e.gls$modelStruct)

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Gender
Parameter estimates:

Male Female
1.000000 2.096499

summary(
lm(residuals(e.gls, type = "normalized")^2 ∼ Gender + Age + Gene + BMI
, data = dfW)

)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.95513614 0.92435359 1.0333017 0.3027491
GenderMale 0.01093174 0.20947960 0.0521852 0.9584348
Age -0.01802386 0.01190435 -1.5140566 0.1316390
GeneB 0.10417273 0.26187007 0.3978031 0.6912127
GeneC -0.05737372 0.24738633 -0.2319195 0.8168450
BMI 0.02549938 0.03491241 0.7303817 0.4660380

4.4.5 (A5): Influential observations

The influence method can be used to output what is the impact of each observation
on each estimated parameter:
if.lme <- influence(e.lm.2)
if.lme$coefficient[1:6,1:4]

(Intercept) GenderMale Age GeneB
1 -0.0768500758 -1.729088e-02 -8.430716e-06 -6.556256e-03
2 0.0033441763 8.848004e-04 -1.583090e-06 -1.330066e-03
3 -1.4634794147 -8.233340e-02 -2.155624e-04 4.249566e-02
4 0.0759756521 -4.035183e-03 4.852756e-05 -8.238371e-04
5 -0.0427789759 -1.599394e-03 2.073558e-05 -8.720082e-03
6 0.0008298817 4.867202e-05 2.398257e-07 -3.293940e-06

Here the value in the first line and third column indicates by how much is changed
the Age effect when removing the first observation.
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coef(update(e.lm.2, data = dfW[-1,]))-coef(e.lm.2)

(Intercept) GenderMale Age GeneB GeneC BMI
7.685008e-02 1.729088e-02 8.430716e-06 6.556256e-03 8.024692e-03 -7.151957e-03

I(BMI^2) GenderMale:Age
1.540482e-04 -6.600643e-04

Large values (positive or negative) indicate influential observations. The following
plot displaying in red the coefficient value and in black the influence of each individual
can be useful:
df1.gg <- data.frame(id = "true", as.data.frame(t(coef(e.lm.2))))
df2.gg <- data.frame(id = as.character(1:NROW(d)),

sweep(if.lme$coefficient, FUN = "+", MARGIN = 2, STATS = coef(e.lm
.2)))

dfL1.gg <- reshape2::melt(df1.gg, id.vars = "id")
dfL2.gg <- reshape2::melt(df2.gg, id.vars = "id")
gg.inf <- ggplot() + facet_wrap(∼variable, scales = "free", nrow = 2)
gg.inf <- gg.inf + geom_boxplot(data = dfL2.gg, aes(y = value))
gg.inf <- gg.inf + geom_hline(data = dfL1.gg, aes(yintercept = value),

color = "red")
gg.inf
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When the aim is to perform prediction, global influence metrics such as Cook’s
distance can be useful:
autoplot(e.lm.2, which = 4)
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4.4.6 Others [not recommanded unless specific reasons]

Some people recommand to check the correlation between the explanatory variables,
with the argument that when very correlated it is difficult to disantangle effects and
thus to interpret the regression coefficients. The VIF (variance inflation factor) is
typically recommanded to check that with values higher than 5 considered as high:
car::vif(e.lm.2)

GVIF Df GVIF^(1/(2*Df))
Gender 16.405278 1 4.050343
Age 2.107105 1 1.451587
Gene 1.070289 2 1.017127
BMI 153.493940 1 12.389267
I(BMI^2) 153.046502 1 12.371196
Gender:Age 17.937937 1 4.235320
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I personnally don’t recommand this as an automatic check since in many settings
co-linearity can be better assessed from the meaning of the variables than from a
statistical test. It is also quite unclear to me why 5 is a good cut-off and we see
in this example that we get values close to five (or higher) even though there is no
issue.
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5 Partial residuals

5.1 With respect to one variable
The partial residuals with respect to age are defined by removing the effect of all the
covariates but age on the outcome:

ε̂Agei = Yi − (α + βGender1Genderi=”Male” + βGeneB1Genei=”B” + βGeneC1Genei=”C” + βBMIBMIi)

Using the following model coefficients:
coef(e.lm)

(Intercept) GenderMale Age GeneB GeneC BMI
91.5609817 3.7984283 -0.1358252 7.8328783 5.8120279 0.7364696

and considering the first individual:
d[1,]

Id Age Gender BMI Gene Y1 Y2 Y3 residuals fitted
1 1 44.2 Male 23.8 A 109.1 120.8 131.7429 0.5188666 108.5811

the partial residual relative to age is:

ε̂Age1 = 109.1− (91.5610 + 3.7984 ∗ 1 + 7.8329 ∗ 0 + 5.8120 ∗ 0 + 0.7365 ∗ 23.8)
= 109.1− 112.8881 = −3.7881

At the dataset level, this type of partial residual is centered around the expected
value of the covariate times its effect (here −0.1358252 ∗ 34.4855 ≈ −4.684). These
partial residuals can be computed using the partialResidual function from the
butils package:
pRes.noI <- partialResiduals(e.lm, var = "Age", keep.intercept = FALSE)
head(pRes.noI)

Id Age Gender BMI Gene Y1 Y2 Y3 pFit ranef pResiduals
1: 1 44.2 Male 23.8 A 109.1 120.8 131.7429 112.8874 0 -3.7873855
2: 2 41.3 Male 27.5 B 123.2 133.9 136.3850 123.4452 0 -0.2452012
3: 3 27.4 Male 30.6 A 140.6 154.0 136.1408 117.8954 0 22.7046216
4: 4 35.3 Male 25.2 C 104.4 116.2 125.0175 119.7305 0 -15.3304708
5: 5 37.1 Male 21.8 A 105.0 113.2 123.6257 111.4144 0 -6.4144463
6: 6 29.9 Male 18.1 C 125.9 136.2 131.7966 114.5015 0 11.3984631

or manually:
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keep.coef <- c("(Intercept)","GenderMale","GeneB","GeneC","BMI")
dfW$Y1[1] - model.matrix(e.lm)[1,keep.coef] %*% coef(e.lm)[keep.coef]

[,1]
[1,] -3.787385

A graphical display can be obtained using the autoplot function (require the
ggplot2 package):
gg <- autoplot(pRes.noI)
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• An alternative definition do not remove the intercept effect:

ε̂Age,αi = Yi − (βGender1Genderi=”Male” + βGeneB1Genei=”B” + βGeneC1Genei=”C” + βBMIBMIi)

so now the residuals are centered around the intercept plus the expected value of age
times the age effect (here approximately 0).
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As before the partial residuals can either be obtained via the partialResiduals
function:
pRes.I <- partialResiduals(e.lm, var = "Age", keep.intercept = TRUE)
head(pRes.I)

Id Age Gender BMI Gene Y1 Y2 Y3 pFit ranef pResiduals
1: 1 44.2 Male 23.8 A 109.1 120.8 131.7429 21.32640 0 87.77360
2: 2 41.3 Male 27.5 B 123.2 133.9 136.3850 31.88422 0 91.31578
3: 3 27.4 Male 30.6 A 140.6 154.0 136.1408 26.33440 0 114.26560
4: 4 35.3 Male 25.2 C 104.4 116.2 125.0175 28.16949 0 76.23051
5: 5 37.1 Male 21.8 A 105.0 113.2 123.6257 19.85346 0 85.14654
6: 6 29.9 Male 18.1 C 125.9 136.2 131.7966 22.94056 0 102.95944

or manually:
keep.coef <- c("GenderMale","GeneB","GeneC","BMI")
dfW$Y1[1] - model.matrix(e.lm)[1,keep.coef] %*% coef(e.lm)[keep.coef]

[,1]
[1,] 87.7736

This corresponds to what the plotConf function is displaying (R package lava
available on CRAN):
lava::plotConf(e.lm, var1 = "Age")
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Note that it is also possible to display the partial residuals for a categorical
variable:
pRes.cat <- partialResiduals(e.lm, var = "Gene", keep.intercept = TRUE)
gg <- autoplot(pRes.cat)
gg
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5.2 With respect to an interaction between two variables
(one continuous, one categorical)

Consider now a model where the age effect can be different for males and females:
e.lmI <- lm(Y1 ∼ Gender * Age + Gene + BMI, data = dfW)

The partial residuals can be defined in a similar way as before. Here the effect of
Age and Gender (and their interaction) are not substracted from the outcome:
gg <- autoplot(partialResiduals(e.lmI, var = c("Age","Gender")))
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5.3 Customizing a partial residual plot
The autoplot function returns the ggplot object:
gg <- autoplot(partialResiduals(e.lm, var = "Gene", keep.intercept = TRUE)

)
class(gg)

[1] "gg" "ggplot"

So it can be easily customized, e.g. the text can be made bigger by doing:
gg + theme(text = element_text(size=25))
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