Efficient baseline adjustment in a randomized trial

Brice Ozenne

June 30, 2021

Disclaimer: this note is a compilation of section 5.4 of Tsiatis (2007), Zhang and Gilbert (2010) and a note by Torben Martinussen.

1 Motivation, objective, and notations

We consider a randomized trial with a single binary or continuous outcome (Y), two treatment arms: placebo $(A=0)$ and active $(A=1)$, and some baseline variables (Z). There are in total $n=n_{0}+n_{1}$ patients, n_{0} in the placebo arm and n_{1} in the treatment arm. The observed data is therefore $\chi=\left(\chi_{i}\right)_{i \in\{1, \ldots, n\}}=\left(Y_{i}, A_{i}, Z_{i}\right)_{i \in\{1, \ldots, n\}}$.

Our parameter of interest is the average difference in outcome:

$$
\psi=\mathbb{E}[Y \mid A=1]-\mathbb{E}[Y \mid A=0]=\mu_{1}-\mu_{0}
$$

which we would like to estimate as efficiently as possible by making use of the baseline variables. We denote $\pi=\mathbb{P}[A=1]$ which is known.

2 Naive estimator

A possible estimator for ψ is:

$$
\hat{\psi}_{n}=\frac{\sum_{i=1}^{n} A_{i} Y_{i}}{\sum_{i=1}^{n} A_{i}}-\frac{\sum_{i=1}^{n}\left(1-A_{i}\right) Y_{i}}{\sum_{i=1}^{n}\left(1-A_{i}\right)}
$$

which satisfies the following decomposition:

$$
\begin{aligned}
\sqrt{n}\left(\hat{\psi}_{n}-\psi\right) & =\sqrt{n}\left(\frac{\sum_{i=1}^{n} A_{i} Y_{i}}{\sum_{i=1}^{n} A_{i}}-\mu_{1}\right)-\sqrt{n}\left(\frac{\sum_{i=1}^{n}\left(1-A_{i}\right) Y_{i}}{\sum_{i=1}^{n}\left(1-A_{i}\right)}-\mu_{0}\right) \\
& =\sqrt{n} \frac{\sum_{i=1}^{n} A_{i}\left(Y_{i}-\mu_{1}\right)}{\sum_{i=1}^{n} A_{i}}-\sqrt{n} \frac{\sum_{i=1}^{n}\left(1-A_{i}\right)\left(Y_{i}-\mu_{0}\right)}{\sum_{i=1}^{n}\left(1-A_{i}\right)} \\
& =\frac{1}{\sqrt{n}} \frac{\sum_{i=1}^{n} A_{i}\left(Y_{i}-\mu_{1}\right)}{\frac{1}{n} \sum_{i=1}^{n} A_{i}}-\frac{1}{\sqrt{n}} \frac{\sum_{i=1}^{n}\left(1-A_{i}\right)\left(Y_{i}-\mu_{0}\right)}{\frac{1}{n} \sum_{i=1}^{n}\left(1-A_{i}\right)} \\
& =\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{A_{i}}{\pi}\left(Y_{i}-\mu_{1}\right)-\frac{\left(1-A_{i}\right)}{1-\pi}\left(Y_{i}-\mu_{0}\right)+o_{p}(1) \\
& =\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathcal{I} \mathcal{F}_{\hat{\mu}_{1}}\left(\chi_{i}\right)-\mathcal{I} \mathcal{F}_{\hat{\mu}_{0}}\left(\chi_{i}\right)+o_{p}(1) \\
& =\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathcal{I} \mathcal{F}_{\hat{\psi}}\left(\chi_{i}\right)+o_{p}(1)
\end{aligned}
$$

where $\mathcal{I F} \mathcal{F}_{x}$ denotes the influence function associated with the estimator x.

3 Derivation of the semi-parametric efficient estimator

3.1 Geometry of the set of all influence function

The log-likelihood can be decomposed as:

$$
\log (f(Y, A, Z))=\log (f(Y \mid A, Z))+\log (f(A \mid Z))+\log (f(Z))
$$

While f denotes the true density, we will denote by f_{θ} a parametric model for this density with parameter θ, where for a specific parameter value (denoted θ_{0}), the modeled density equal the true density (i.e. $f_{\theta_{0}}=f$). For instance $Z \sim \mathcal{N}(0,1)$ and $f_{\theta}(Z)$ could be the density of a Gaussian distribution; in this case θ would be a vector composed of the mean and variance parameters and $\theta_{0}=(0,1)$. We will also denote by $\mathcal{S}_{\theta}(Y \mid A, Z)=\frac{\partial \log \left(f_{\theta}(Y \mid A, Z)\right)}{\partial \theta}$ the associated score function, and by $\left\{B \mathcal{S}_{\theta}(Y \mid A, Z), \forall B\right\}$ its nuisance tangent space, i.e. the space of all linear combinations of the score function.

If there was no restriction (i.e no randomization) the terms of the log-likelihood would be variationnally independent and the entire Hilbert space ${ }^{1}$ could therefore be partitionned in three orthogonal spaces (theorem 4.5 in Tsiatis (2007)):

$$
\mathcal{H}=\mathcal{T}_{1} \oplus \mathcal{T}_{2} \oplus \mathcal{T}_{3}
$$

[^0]where $\mathcal{T}_{1}\left(\operatorname{resp} \mathcal{T}_{2}\right.$ and $\left.\mathcal{T}_{3}\right)$ is the mean-square closure of parametric submodel tangent spaces for $f(Y \mid A, Z)$ (resp. $f(A \mid Z)$ and $f(Z)$). More precisely, \mathcal{T}_{1} is the space of functions $h(Y \mid A, Z) \in \mathcal{H}$ such that there exists, for a sequence of parametric submodel indexed by $j \in \mathbb{N},\left\{B_{j} \mathcal{S}_{\theta, j}(Y \mid A, Z)\right\}_{j \in \mathbb{N}}$ such that:
$$
\left\|h(Y \mid A, Z)-B_{j} \mathcal{S}_{\theta, j}(Y \mid A, Z)\right\|^{2} \xrightarrow{j \rightarrow \infty} 0
$$

Since the corresponding score should have conditional expectation 0 , we get that \mathcal{T}_{1} is the space of functions of Y, A, Z with finite variance and null expectation conditional to A and Z. A similar result holds for the other spaces which is summarized as:

$$
\begin{aligned}
& \mathcal{T}_{1}=\left\{\alpha_{1}(Y, A, Z), \mathbb{E}\left[\alpha_{1}(Y, A, Z) \mid A, Z\right]=0\right\} \\
& \mathcal{T}_{2}=\left\{\alpha_{2}(A, Z), \mathbb{E}\left[\alpha_{2}(A, Z) \mid Z\right]=0\right\} \\
& \mathcal{T}_{3}=\left\{\alpha_{3}(Z), \mathbb{E}\left[\alpha_{3}(Z)\right]=0\right\}
\end{aligned}
$$

In our application, because of randomization $f(A \mid Z)=f(A)=\pi^{A}(1-\pi)^{1-A}$ is known. In that case the tangent space is equal to:

$$
\mathcal{T}=\mathcal{T}_{1} \oplus \mathcal{T}_{3}
$$

so the orthogonal of the tangent space, \mathcal{T}^{\perp}, is \mathcal{T}_{2}. We first introduce an alternative representation of the element of \mathcal{T}_{2} :

$$
\mathcal{T}_{2}=\left\{\alpha_{2}(A, Z)-\mathbb{E}\left[\alpha_{2}(A, Z) \mid Z\right]\right\}
$$

Moreover since A is binary we can write without loss of generality $\alpha_{2}(A, Z)=$ $A f(Z)+g(Z)$. So:

$$
\begin{aligned}
\mathcal{T}_{2} & =\{A f(Z)+g(Z)-\mathbb{E}[A g(Z)+g(Z) \mid Z]\} \\
& =\{(A-\pi) g(Z)\}
\end{aligned}
$$

From the semi-parametric theory we know that the set of all influence function is spanned by the orthogonal to the tangent space:

$$
\begin{aligned}
\left\{\mathcal{I} \mathcal{F}_{\hat{\psi}}+\mathcal{T}_{2}\right\} & =\left\{\mathcal{I} \mathcal{F}_{\hat{\psi}}+(A-\pi) g(Z)\right\} \\
& =\left\{\frac{A}{\pi}\left(Y-\mu_{1}\right)-\frac{(1-A)}{1-\pi}\left(Y-\mu_{0}\right)+(A-\pi) g(Z)\right\}
\end{aligned}
$$

where g is an arbitrary function.

3.2 Identification of the efficient influence function

From theorem 3.5 (section 3, page 46) of Tsiatis (2007), we have that the efficient influence function, $\mathcal{I} \mathcal{F}_{\hat{\psi}}^{e f f}$ lies in the tangence space (i.e. is orthogonal to \mathcal{T}^{\perp}, see Figure 1 for an illustration of the geometry).

Figure 1: Geometrical view of the influence function $(\mathcal{I F})$, the score (\mathcal{S}), the efficient influence function $\left(\mathcal{I} \mathcal{F}_{e f f}\right)$, the efficient score $\left(\mathcal{S}_{e f f}\right)$ with respect to the tangent space for the parameter of interest \mathcal{T}_{ψ} and the tangent space for the nuisance parameters \mathcal{T}_{η}.

So we just need to remove the composant of the naive influence function that lies in the orthogonal of the tangent space:

$$
\begin{aligned}
\mathcal{I} \mathcal{F}_{\hat{\psi}}^{e f f} & =I F_{\hat{\psi}}-\Pi\left(I F_{\hat{\psi}} \mid \mathcal{T}^{\perp}\right) \\
& =I F_{\hat{\psi}}-\Pi\left(I F_{\hat{\psi}} \mid \mathcal{T}_{2}\right)
\end{aligned}
$$

where $\Pi(. \mid x)$ denotes the projection of . onto x. We first note that any element h of the Hilbert space can be decomposed as:

$$
\begin{aligned}
h(Y, A, Z) & =h_{1}(Y, A, Z)+h_{2}(Y, A, Z)+h_{3}(Y, A, Z) \\
h_{1} & =\mathbb{E}[h(Y, A, Z) \mid Z] \\
h_{2} & =\mathbb{E}[h(Y, A, Z) \mid Z]-\mathbb{E}[h(Y, A, Z) \mid A, Z] \\
h_{3} & =\mathbb{E}[h(Y, A, Z) \mid A, Z]-h(Y, A, Z)
\end{aligned}
$$

Theorem 4.5 in Tsiatis (2007) shows that for any $j \in\{1,2,3\}, h_{j}=\Pi\left(h \mid \mathcal{T}_{j}\right)$. So:

$$
\begin{aligned}
\Pi\left(I F_{\hat{\psi}} \mid \mathcal{T}_{2}\right)= & \mathbb{E}\left[I F_{\hat{\psi}} \mid Z\right]-\mathbb{E}\left[I F_{\hat{\psi}} \mid A, Z\right] \\
= & \mathbb{E}\left[\left.\mathbb{E}\left[\left.\frac{A}{\pi}\left(Y-\mu_{1}\right)-\frac{(1-A)}{1-\pi}\left(Y-\mu_{0}\right) \right\rvert\, A, Z\right] \right\rvert\, Z\right] \\
& -\mathbb{E}\left[\left.\frac{A}{\pi}\left(Y-\mu_{1}\right)-\frac{(1-A)}{1-\pi}\left(Y-\mu_{0}\right) \right\rvert\, A, Z\right] \\
= & \frac{\mathbb{E}[A]}{\pi}\left(\mathbb{E}[Y \mid A=1, Z]-\mu_{1}\right)-\frac{\mathbb{E}[1-A]}{1-\pi}\left(\mathbb{E}[Y \mid A=0, Z]-\mu_{0}\right) \\
& -\left(\frac{A}{\pi}\left(\mathbb{E}[Y=1 \mid A, Z]-\mu_{1}\right)-\frac{(1-A)}{1-\pi}\left(\mathbb{E}[Y \mid A=0, Z]-\mu_{0}\right)\right) \\
= & \frac{\pi-A}{\pi}\left(\mathbb{E}[Y \mid A=1, Z]-\mu_{1}\right)-\frac{(1-\pi)-(1-A)}{1-\pi}\left(\mathbb{E}[Y \mid A=0, Z]-\mu_{0}\right)
\end{aligned}
$$

which lead to the following expression for the efficient influence function:

$$
\begin{aligned}
\mathcal{I} \mathcal{F}_{\hat{\psi}}^{e f f}= & \frac{A}{\pi}\left(Y-\mu_{1}\right)+\frac{\pi-A}{\pi}\left(\mathbb{E}[Y \mid A=1, Z]-\mu_{1}\right) \\
& -\frac{(1-A)}{1-\pi}\left(Y-\mu_{0}\right)-\frac{(1-\pi)-(1-A)}{1-\pi}\left(\mathbb{E}[Y \mid A=0, Z]-\mu_{0}\right) \\
= & \mathcal{I} \mathcal{F}_{\hat{\mu}_{1}}^{e f f}-\mathcal{I} \mathcal{F}_{\hat{\mu}_{0}}^{e f f}
\end{aligned}
$$

Solving $\sum_{i=1}^{n} \mathcal{I} \mathcal{F}_{\hat{\mu}_{1}}^{e f f}=0$ in μ_{1} gives:

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{A_{i}+\pi-A_{i}}{\pi} \tilde{\mu}_{1} & =\sum_{i=1}^{n}\left(\frac{A_{i} Y_{i}}{\pi}+\frac{\pi-A_{i}}{\pi} \mathbb{E}[Y \mid A=1, Z]\right) \\
\tilde{\mu}_{1} & =\frac{1}{n_{1}} \sum_{i=1}^{n}\left(A_{i} Y_{i}+\left(\pi-A_{i}\right) \mathbb{E}[Y \mid A=1, Z]\right) \\
& =\hat{\mu}_{1}+\frac{1}{n_{1}} \sum_{i=1}^{n}\left(\pi-A_{i}\right) \mathbb{E}[Y \mid A=1, Z]
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
\tilde{\mu}_{0} & =\frac{1}{n_{0}} \sum_{i=1}^{n}\left(\left(1-A_{i}\right) Y_{i}+\left((1-\pi)-\left(1-A_{i}\right)\right) \mathbb{E}[Y \mid A=0, Z]\right) \\
& =\hat{\mu}_{0}+\frac{1}{n_{0}} \sum_{i=1}^{n}\left((1-\pi)-\left(1-A_{i}\right)\right) \mathbb{E}[Y \mid A=0, Z]
\end{aligned}
$$

and:

$$
\begin{aligned}
\tilde{\psi} & =\tilde{\mu}_{1}-\tilde{\mu}_{0} \\
& =\hat{\psi}+\frac{1}{n_{1}} \sum_{i=1}^{n}\left(\pi-A_{i}\right) \mathbb{E}[Y \mid A=1, Z]-\frac{1}{n_{0}} \sum_{i=1}^{n}\left((1-\pi)-\left(1-A_{i}\right)\right) \mathbb{E}[Y \mid A=0, Z]
\end{aligned}
$$

4 Relationship to the G-formula computation

When performing a logistic regression including an intercept, A, and Z the score equation is:

$$
\sum_{i=1}^{n} X_{i}\left(Y_{i}-\frac{1}{1+\exp \left(-X_{i} \theta\right)}\right)=0
$$

where $X_{i}=\left(1, A_{i}, Z_{i}\right)$ is the design matrix and $\theta=\left(\theta_{1}, \theta_{A}, \theta_{Z}\right)$ the set of model parameters. We can in fact reparametrize it as $X_{i}=\left(1-A_{i}, A_{i}, Z_{i}\right)$ with $\theta=$ $\left(\theta_{1-A}, \theta_{A}, \theta_{Z}\right)$. Then the logistic regression solves the following equations:

$$
\begin{aligned}
& \sum_{i=1}^{n} A_{i}\left(Y_{i}-\frac{1}{1+\exp \left(-X_{i} \theta\right)}\right)=0 \\
& \sum_{i=1}^{n}\left(1-n A_{i}\right)\left(Y_{i}-\frac{1}{1+\exp \left(-X_{i} \theta\right)}\right)=0
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \frac{A_{i}}{\pi}\left(Y_{i}-\frac{1}{1+\exp \left(-\theta_{A}-Z_{i} \theta_{Z}\right)}\right)=0 \\
& \frac{1}{n} \sum_{i=1}^{n} \frac{1-A_{i}}{1-\pi}\left(Y_{i}-\frac{1}{1+\exp \left(-\theta_{1-A}-Z_{i} \theta_{Z}\right)}\right)=0
\end{aligned}
$$

So the G-formula estimator is asymptotically equivalent to the efficient estimator:

$$
\begin{aligned}
\bar{\mu}_{1} & =\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\exp \left(-\theta_{A}-Z_{i} \theta_{Z}\right)} \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[Y \mid A_{i}=1, Z_{i}\right]+o_{p}(1) \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[Y \mid A_{i}=1, Z_{i}\right]+\frac{A_{i}}{\pi}\left(Y_{i}-\mathbb{E}\left[Y \mid A_{i}=1, Z_{i}\right]\right)+o_{p}(1) \\
& =\tilde{\mu}_{1}+o_{p}(1)
\end{aligned}
$$

Because

$$
\begin{aligned}
\mathbb{E}\left[\frac{A}{\pi}(Y-\mathbb{E}[Y \mid A=1, Z])\right] & =\mathbb{E}\left[\frac{A}{\pi}(Y-\mathbb{E}[Y \mid A, Z])\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\left.\frac{A}{\pi}(Y-\mathbb{E}[Y \mid A, Z]) \right\rvert\, A, Z\right]\right] \\
& =\mathbb{E}\left[\frac{\mathbb{E}[A]}{\pi}(\mathbb{E}[Y \mid A, Z]-\mathbb{E}[Y \mid A, Z])\right]=0
\end{aligned}
$$

5 References

Tsiatis, A. (2007). Semiparametric theory and missing data. Springer Science \& Business Media.

Zhang, M. and Gilbert, P. B. (2010). Increasing the efficiency of prevention trials by incorporating baseline covariates. Statistical communications in infectious diseases, 2(1).

[^0]: ${ }^{1}$ Here, when Z has dimension 1, the Hilbert space is the space of 3-dimensional mean-zero finite-variance measurable functions, equipped with the covariance inner product.

