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Disclaimer: this note is a compilation of section 5.4 of Tsiatis (2007), Zhang and
Gilbert (2010) and a note by Torben Martinussen.

1 Motivation, objective, and notations

We consider a randomized trial with a single binary or continuous outcome (Y'), two
treatment arms: placebo (A = 0) and active (A = 1), and some baseline variables
(Z). There are in total n = ng + n; patients, ng in the placebo arm and n; in the

treatment arm. The observed data is therefore X = (Xi)icqy, .y = (Yis Ais Zi)icpn n}-

.....

Our parameter of interest is the average difference in outcome:
Yp=E[Y[A=1]-E[Y[A=0] = — o
which we would like to estimate as efficiently as possible by making use of the baseline
variables. We denote m = P [A = 1] which is known.
2 Naive estimator

A possible estimator for 1) is:

U = im AYi X (1 —A)Y;
! i=1 A; ?:1(1 - Ai)




which satisfies the following decomposition:
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where ZF, denotes the influence function associated with the estimator x.

3 Derivation of the semi-parametric efficient esti-

mator

3.1 Geometry of the set of all influence function

The log-likelihood can be decomposed as:

log(f(Y, A, 2)) = log(f(Y]A, Z)) +log(f(A]Z)) +log(f(2))

While f denotes the true density, we will denote by fy a parametric model for this
density with parameter 6, where for a specific parameter value (denoted 6p), the
modeled density equal the true density (i.e. fg, = f). For instance Z ~ N (0,1)
and fy(Z) could be the density of a Gaussian distribution; in this case § would be
a vector composed of the mean and variance parameters and 6, = (0,1). We will
also denote by Sp(YA,Z) = W the associated score function, and by
{BSy(Y|A, Z),VB} its nuisance tangent space, i.e. the space of all linear combina-
tions of the score function.

If there was no restriction (i.e no randomization) the terms of the log-likelihood
would be variationnally independent and the entire Hilbert space ! could therefore
be partitionned in three orthogonal spaces (theorem 4.5 in Tsiatis (2007)):

H=Ti®T2®T;s

'Here, when Z has dimension 1, the Hilbert space is the space of 3-dimensional mean-zero
finite-variance measurable functions, equipped with the covariance inner product.



where Ty (resp 75 and 7T3) is the mean-square closure of parametric submodel tangent
spaces for f(Y|A,Z) (resp. f(A|Z) and f(Z)). More precisely, T; is the space
of functions h(Y'|A,Z) € H such that there exists, for a sequence of parametric
submodel indexed by j € N, {B;Sp;(Y|A, Z)}, such that:

1(Y|A, Z) — B;Ss; (YA, Z)| 2% 0

Since the corresponding score should have conditional expectation 0, we get that 7Ty is
the space of functions of Y, A, Z with finite variance and null expectation conditional
to A and Z. A similar result holds for the other spaces which is summarized as:

Ti={a1(Y,A Z),E[on(Y, A, Z)|A, Z] = 0}

75 = {052<A7 Z),E[OQ(A, Z)’Z] = 0}

Ts ={a3(2),E|a3(Z)] = 0}

A( )1—A is

In our application, because of randomization f(A|Z) = f(A) = 7 (1 — 7

known. In that case the tangent space is equal to:
T=Ti®T;

so the orthogonal of the tangent space, 7+, is T5. We first introduce an alternative
representation of the element of 7s:

75 = {042(147 Z) - E[OQ(A? Z)|Z]}

Moreover since A is binary we can write without loss of generality as(A,Z) =
Af(Z)+g9(Z). So:
T ={Af(Z) +9(Z2) - E[Ag(Z) + 9(2)| Z]}
={(A-mg(2)}

From the semi-parametric theory we know that the set of all influence function is
spanned by the orthogonal to the tangent space:

{TF;+ T} = {TF;+ (A—m)g(2)}

Z{fwéuﬂ—%:fNY—m%HA—ﬂﬂ@}

where ¢ is an arbitrary function.



3.2 Identification of the efficient influence function

From theorem 3.5 (section 3, page 46) of Tsiatis (2007), we have that the efficient
influence function, ZF Zf 7 lies in the tangence space (i.e. is orthogonal to T, see
Figure 1 for an illustration of the geometry).
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Figure 1: Geometrical view of the influence function (ZF), the score (S), the efficient
influence function (ZF.yy), the efficient score (S.sf) with respect to the tangent space
for the parameter of interest 7, and the tangent space for the nuisance parameters
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So we just need to remove the composant of the naive influence function that lies
in the orthogonal of the tangent space:

IFIT = 1F; — (I Fy|T)
= IF; — TI(IFy|T5)

where II(.|z) denotes the projection of . onto x. We first note that any element
h of the Hilbert space can be decomposed as:

WY, A, Z) = h(Y, A, Z) + ho(Y, A, Z) + hs(Y, A, Z)
hi =E[h(Y, A, 2)|Z]
hy = E[h(Y, A, Z)|Z] — E[h(Y, A, Z)|A, Z]
hs = E[h(Y, A, Z)|A, Z] — WY, A, Z)



Theorem 4.5 in Tsiatis (2007) shows that for any j € {1,2,3}, h; = II(h|T;). So:

(IF;|T) =K [1Fy|Z] — E[1Fy|A, Z]
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which lead to the following expression for the efficient influence function:
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4 Relationship to the G-formula computation

When performing a logistic regression including an intercept, A, and Z the score

equation is:

n 1
Xi|Yi— =
; ( 1+ exp(—Xﬂ)) 0

where X; = (1, A;, Z;) is the design matrix and 6 = (6;,04,07) the set of model
parameters. We can in fact reparametrize it as X; = (1 — A;, A;, Z;) with 0 =
(01-4,04,07). Then the logistic regression solves the following equations:

1
Ay — —
’ < o1+ ea:‘p(—Xﬁ)) 0

(1-nd) (Y" 1t expl(—XiQ)> =0
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So the G-formula estimator is asymptotically equivalent to the efficient estimator:

= :E 1+ eapl(— 19A ~ Z.67)
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E [“: Y -E[Y]|A= 1,Z])} =F “:(Y E[Y]|A, Z])}

=K E[i Y —E[Y|A, Z]) ‘A Z”
_E ELA (E[Y|A, 2] - E[V|A, Z])} — 0
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