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A question that often arise in consultations is:

"My data is not normally distributed. What should I do?"

In my views, this is a very vague question. It is a bit like going to the doctor and
asking him:

"My body temperature is outside of the 36-37°C normal range. What should I do?"
In many cases statistical methods are robust (i.e. ensure approximate type 1 error
control and give nearly efficient estimators) to "small" deviations from normality.
So while it is a good idea to check for normality, it is not a good idea to change
statistical tool just because you get a significant p-value out of a Shapiro test. If I
follow the analogy, medicine can be harmful and one should not take medicine every
time ones body temperature is outside the normal range. It is however a good idea
to check what is going on when your temperature is high to make sure it does not
hide something bad.

To ease the discussion, we will consider a simple example where we want to com-
pare the outcome distribution between two groups. We assume to have no missing
data and no measurement error, and that no external covariate is relevant. In that
case, we can visualize the distribution of the outcome per group and perform the
comparison "visually'. We will consider four examples (Figure 1):

o Normally distributed outcomes: no problem here.

e Student distributed outcomes: symetric and unimodal distribution but with
outliers.

o Gamma distributed outcomes: asymetric distribution.

o Normally distributed outcomes with ceilling effect: many observations have
exactly the same value.
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Figure 1: Example datasets.

/N if any, distributional assumptions are usually made on the resiudal terms, e.g:
Y = X + ¢ where ¢ NN(O,U2)

and not on the outcome Y. Concretely, we don’t assume that the outcome is
normally distributed but that within groups (or once we remove the group effect) it
is normally distributed. In example 1, the outcome is clearly not normally distributed
(it is bimodal) but within groups it is normally distributed.



1 Statistical properites

When we use a statistical procedure to estimate a parameter of interest (say 6), we
generally want to report an estimate of this parameter based on the data we have
(denoted GA) We generally also want to report the uncertainty around this estimate
via a confidence intervals (denoted IC5; = [Ly; Up]) or report a p-value that reflects
whether a value (say 6p) is compatible with the data at hand. We will therefore

distinguish three properties for a statistical procedure:

o validity of the estimate: the estimate should tend to the true value as we
increase the sample size (consistency) or the average estimate should tend to
the true value as repeat the experiment (unbiasedness).

o validity of the uncertainty: the confidence interval should have proper
coverage, typically they should contain the true value with probablity 95%.
The p-value should have a uniform distribution under the null meaning that
the type 1 error is controlled at its nominal level, typically 5%.

o efficiency: the procedure is optimal in the sense that it makes the best use of
the data at hand.
For instance we expect the estimates to be as precise as possible, i.e. to have
the narrowest possible confidence intervals. We also expect that the type 2
error should be the smallest possible (i.e. highest power). In other terms,
whenever the null hypothesis is false, the test should rejected it as often as
possible.

In the following we will assume that these properties are of decreasing interest:
having unbiased estimates is the most important as quantifying uncertainty and
efficiency can be fixed by replicating studies and performing a meta-analysis. A non-
efficient estimator can still give useful and valid results - it will "just" waste ressources
but not be misleading (if used and interpreted correctly).



2 Should we worry about normality?

Most statistical procedures do not require any normality assumption to provide con-
sistent estimates with asymptotically valid confidence intervals and p-values. For
instance t-tests and linear regressions can be shown to provide consistent and asymp-
totically normally distributed estimates in large iid ! samples, regardless to whether
they are normally distributed as soon as their first two moments are finite. Here it is
important to distringuish between the distribution of the outcome (say Y') and the
distribution of the parameter of interest, often the mean of Y. Averaging "normalizes"
the distribution, which is formalized in the central limit theorem, and illustrated on
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Figure 2: Distribution of the estimated mean along the sample size.

This means that (almost) regardless to the input data, we will be able to estimate
parameters which follows a normal distribution, i.e. for which we can quantify the
uncertainty. Results from the M-estimation theory or the maximum likelihood theory
can be used to show that finding parameters that minimize an error that is the lack
of fit relative to individual observations lead to consistent estimates. Concretely, this
means that the coverage/type 1 error control of many standard procedures such as
the t-test and the linear regression will be at their nominal level in large samples,
even though the normality assumption is not fullfilled (Figure 3) ... for large enough
sample sizes.

lindependent and identically distributed
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type 1 error

Does that mean we should not worry about normality? No:
1. we may have a valid test / consistent estimate of a meaningless parameter.
2. we may only have a small sample.

3. our estimator may not be efficient. This is usually not a problem, except when
we loose so much efficiency that the estimate becomes very variable. This
typically happen in presence of outliers.

4. no assuming normality complicates the understanding the group effect, as the
normal distribution is one of the few distribution that can be summarized by
two, easily interpretable, independent, parameters (mean and variance).

5. no assuming normality complicates other diagnostic tests, e.g. correlation is
not independence and mean

the following we will focus on issue 1-3.
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Figure 3: Coverage of the t-test.



3 Issue 1: parameter of interest with non-normal
data

By default, we generally use the mean to define our parameter of interest. In our
example the difference in mean between the two groups meaning that we summarize
the distribution of the outcome for each group by its mean (or expected value) and
then take the difference between groups. This is somehow arbitrary, we could have
used another summary statistic like the standard deviation, the median (or any other
quantile), the mode, . ... However it is not completely arbitrary:

« it is convenient to model and compute: many estimators and softwares have
been developped for modeling the mean. Also this can be done in a numerically
stable and efficient way.

e it is a natural choice if the outcome is normally distributed as the mean
and the variance fully characterize the distribution so no need to model other
summary statistics. In particular, for normal distributions the mean is equal
to the median and the mode of the distribution.

e it is easy to interpret if the outcome is normally distributed as it is the
average but also most likely value.

When the distribution is not normal, the last two arguments might not be true.
While they approximately hold if the distribution is unimodal and symmetric, they
are not valid for asymetric or bimodal distribution. For instance, the mean of a
binary variable will correspond to a value that is never observed! If we look at
Figure 4, we can see that the mean is far from being the most likely value (i.e. the
mode). The median is slightly closer to the mode but does not really provide a
satisfactory improvement.
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Figure 4: Mean, median, and mode two asymetric distributions.

In such a case, it can be a good idea to define a new parameter of interest. One
could for instance apply a transformation that normalizes the distribution (e.g. log-
transformation, see Figure 5), estimate the mean of the transformed data (here 1.1 vs
1.8), and compare them across groups (here 0.7). In the case of a log-transformation,
the back-transformed difference and get a nice interpretation has a nice interpration:
it is a multiplicative effect (exp(0.7)=2, i.e. the mean in the treatment is twice larger
than in the control group). So, instead of studying an additive group effect (on the
mean), the parameter of interest is a multiplicative group effect (on the mean).
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Figure 5: Mean, median, and mode on the log-transformed data

TODO: Mann-Whitney parameter (e.g. if one cannot find a good transforma-
tion), Zero inflated model (example 4)



4 Issue 2: handling small samples with non-normal
data

Bias correction
Permutation tests
Robust standard error



5 Issue 3: handling outliers

No good solution here. Check the influence of each observation. Median more robust

than mean.
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