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A question that often arise in consultations is:

"My data is not normally distributed. What should I do?"

I find it difficult to answer as it is vague. It is a bit like going to the doctor and
asking him:

"My body temperature is outside of the 36-37°C normal range. What should I do?"

In some cases statistical methods are robust (i.e. ensure approximate type 1 error
control and give nearly efficient estimators) to "small" deviations from normality.
So while it is a good idea to check for normality, it is not a good idea to change
statistical tool just because you get a significant p-value out of a Shapiro test. If I
follow the analogy, medicine can be harmful and one should not take medicine every
time ones body temperature is outside the normal range. It is however a good idea
to check what is going on when your temperature is high to make sure it does not
hide something bad. First thing to consider is the type of variable for which the
concern about normality arised:

• outcome: non-normality can be a threat to the interpretability of the estimate
and the validity of subsquent hypothesis test. Example of non-normality are
shown in Figure 3 and corresponding solution are discussed section 3.

• exposure: generally not a problem. One notable exception is in presence of
outliers when assuming a linear exposure effect as the outliers may have an
unacceptable influence on the exposure effect (see Figure 1 for example). This
will be discussed in section 2.

• covariate: generally not a problem. One notable exception is in presence
of outliers when assuming a linear exposure effect as the outliers may have
an unacceptable influence on the exposure effect. Possible solutions relaxing
the linearity assumption (using splines or categorizing the covariate). If the
covariate is not strongly related to the outcome one can also consider excluding
it from the model. It is not further discussed in this document.

Before discussing any solution, the next section what is understood as a ’good’ or a
’valid’ statistical procedure.
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1 Statistical properties
When we use a statistical procedure to estimate a parameter of interest (say θ), we
generally want to report an estimate of this parameter based on the data we have
(denoted θ̂). We generally also want to report the uncertainty around this estimate
via a confidence intervals (denoted IC

θ̂
= [L

θ̂
; U

θ̂
]) or report a p-value that reflects

whether a value (say θ0) is compatible with the data at hand. We will therefore
distinguish three properties for a statistical procedure:

• validity of the estimate: the estimate should tend to the true value as we
increase the sample size (consistency) or the average estimate should tend to
the true value as repeat the experiment (unbiasedness).

• validity of the uncertainty: the confidence interval should have proper
coverage, typically they should contain the true value with probablity 95%.
The p-value should have a uniform distribution under the null meaning that
the type 1 error is controlled at its nominal level, typically 5%.

• robustness: means that the validity of the estimate and uncertainty is not
(dramatically) altered when the sample is altered by a fixed proportion of
extreme values (say 1% of outliers).

• efficiency: the procedure is optimal in the sense that it makes the best use of
the data at hand.
For instance we expect the estimates to be as precise as possible, i.e. to have
the narrowest possible confidence intervals. We also expect that the type 2
error should be the smallest possible (i.e. highest power). In other terms,
whenever the null hypothesis is false, the test should rejected it as often as
possible.

In the following we will assume that these properties are of decreasing interest:
having unbiased estimates is the most important as quantifying uncertainty and
efficiency can be fixed by replicating studies and performing a meta-analysis. A non-
efficient estimator can still give useful and valid results - it will "just" waste ressources
but not be misleading (if used and interpreted correctly). Typically robustness can
be acquired at the expense of efficiency (and interpretability).

2



2 Non-normal exposure
Consider the following example shown in Figure 1 (example 5.1 in Maronna et al.
(2019)) evaluating the association between the contents of Western Australian rocks.
Consider first a linear relationship:

• one point has a significant impact on the regression slope: 0.135 (p<0.001) vs
0.030 (p=0.18) when exluded. The ’red’ regression line does not seems to be a
reasonnable summary of the association.

• even after removal of observation 15, the exposure is still far from following
a normal distribution as it seems very right-skewed. Nevertheless the ’blue’
regression line seems to be a reasonnable summary of the association.

• modeling the median instead of the mean only partially solves the issue: obser-
vation 15 has still a noticeable influence on the slope (0.080 vs. 0.056). In fact
in a more extreme example shown in the right panel of As shown in Figure 2
one could construct example where a small fraction of outliers would still be
very influencial.

Consider instead a non-linear relationship:

• using thin plate regression splines seems to provide a reasonnable summary of
the association with a different slope for small copper value compared to high
copper content. The later slope is probably estimated with a lot of uncertainty
due to only few observations with high copper content: this could be seen from
the width of the confidence intervals of the regression line.
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Figure 1: Real data with non-normal ex-
posure.
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Figure 2: Simulated data with non-
normal exposure.
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This example illustrate several key considerations:

• the exposure does not need to be normally distributed for statistical methods to
apply BUT parametric assumptions, such as linearity, make common statistical
tools sensitive to extreme values.

• it can be a good idea to restrict the study of the exposure to commonly observed
values. This is similar to an inclusion criteria in a clinical trial on the disease
severity (e.g. not including terminally ill patients).

• some methods sometimes refered as ’robust’, like median or quantile regression,
have been developped to handle extreme values in the outcome not in the
exposure and thus may not lead to a satisfactory solution. For instance, median
regression minimizes the average of the absolute residuals and can therefore be
greatly influenced by a single leverage point.

• solutions include relaxing parametric assumptions or using more specialized
’robust’ technics, e.g. estimators based on a robust summary of the residual
(e.g. median of the absolute residuals). They typically make the interpretation
more challenging either because there is no more a single number describing the
association or the single number is no more ’just’ a mean or median difference
in the population of interest.

2.1 code

2.1.1 No covariate

Load data:
library(RobStatTM)
data(mineral)
mineral <- mineral[order(mineral$copper),]
head(mineral)

copper zinc
41 4 4
48 12 3
49 14 10
36 17 15
42 18 10
26 19 17

Quick assessment of normality of the exposure:
shapiro.test(mineral$copper)
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Shapiro-Wilk normality test

data: mineral$copper
W = 0.67314, p-value = 1.374e-09

Analysis:
library(quantreg)
library(mgcv)
library(robust)
library(RobStatTM)

set.seed(1)
e.mean <- lm(zinc ∼ copper, data = mineral)
e15.mean <- lm(zinc ∼ copper, data = mineral[-NROW(mineral),])
e.median <- rq(zinc ∼ copper, data = mineral)
e15.median <- rq(zinc ∼ copper, data = mineral[-NROW(mineral),])
e.lmRob <- lmRob(zinc ∼ copper, data = mineral)
e.lmRob2 <- lmrobdetMM(zinc ∼ copper, data = mineral,

control = lmrobdet.control(family = "bisquare"))
e.gam <- gam(zinc ∼ s(copper), data = mineral)

rbind(mean.all = summary(e.mean)$coef["copper",],
median.all = summary(e.median, se = "boot")$coef["copper",],
rob.all = summary(e.lmRob)$coef["copper",],
rob2.all = summary(e.lmRob2)$coef["copper",],
mean.red = summary(e15.mean)$coef["copper",],
median.red = summary(e15.median, se = "boot")$coef["copper",])

Estimate Std. Error t value Pr(>|t|)
mean.all 0.13456951 0.01982765 6.7869632 1.181421e-08
median.all 0.08024691 0.05326053 1.5066864 1.380606e-01
rob.all 0.01471517 0.02424047 0.6070496 5.465113e-01
rob2.all 0.03118872 0.02082673 1.4975332 1.404186e-01
mean.red 0.02974749 0.02205388 1.3488551 1.834611e-01
median.red 0.05590062 0.04380294 1.2761843 2.077867e-01
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2.1.2 With covariates

We now consider a more complex example (example 5.2 in Maronna et al. (2019))
involving multiple covariates:
library(robustbase)
data(wood, package = "robustbase")
head(wood)

x1 x2 x3 x4 x5 y
1 0.573 0.1059 0.465 0.538 0.841 0.534
2 0.651 0.1356 0.527 0.545 0.887 0.535
3 0.606 0.1273 0.494 0.521 0.920 0.570
4 0.437 0.1591 0.446 0.423 0.992 0.450
5 0.547 0.1135 0.531 0.519 0.915 0.548
6 0.444 0.1628 0.429 0.411 0.984 0.431

We fit each model:
e.lm <- lm(y ∼ x1 + x2 + x3 + x4 + x5, data = wood)
e.lmRob2 <- lmrobdetMM(y ∼ x1 + x2 + x3 + x4 + x5, data = wood,

control = lmrobdet.control(family = "bisquare"))

And extract the partial residuals

• either adding the intercept and the contribution to the variable of interest to
the residuals:

pres.lm <- residuals(e.lm) + coef(e.lm)["(Intercept)"] + wood$x1 * coef(e
.lm)["x1"]

pres.robust <- residuals(e.lmRob2) + coef(e.lmRob2)["(Intercept)"] + wood$
x1 * coef(e.lmRob2)["x1"]

• or using the residuals method and re-centering the result (to match the orig-
inal mean instead of 0):

Mpres.lm2 <- residuals(e.lm, type = "partial")
centerX.lm <- sum(coef(e.lm)[paste0("x",2:5)] * colMeans(wood)[paste0("x"

,2:5)])
pres.lm2 <- Mpres.lm2[,"x1"] + attr(Mpres.lm2, "constant") - centerX.lm

Both approaches give the same up to a constant:
range(pres.lm - pres.lm2)

[1] -1.110223e-16 1.110223e-16
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We can then combine the partial residuals in a single data.frame:
df.pres <- rbind(data.frame(method = "lm", x1 = wood2$x1, res = Mpres.lm),

data.frame(method = "robust", x1 = wood2$x1,
res = Mpres.robust))

and evaluate the model fit along x1 value, keep the other covariates at their reference
level (here 0):
grid.data <- data.frame(x1 = seq(min(wood2$x1),max(wood2$x1),by=0.01),

x2 = 0, x3 = 0, x4 = 0, x5 = 0)
df.pfit <- rbind(data.frame(method = "lm", x1 = grid.data$x1,

fit = predict(e.lm, newdata = grid.data)),
data.frame(method = "robust", x1 = grid.data$x1,

fit = predict(e.lmRob2, newdata = grid.data))
)

to obtain the following graphical display:
library(ggplot2)
ggP <- ggplot(mapping = aes(x=x1))
ggP <- ggP + geom_point(data = df.pres,

mapping = aes(y = res, color = method))
ggP <- ggP + geom_line(data = df.pfit,

mapping = aes(y = fit, color = method))
ggP <- ggP + labs(x = "x1", y = "Y (partial residuals w.r.t. x1)")
ggP
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This dataset was created to have 4 unusual observations (those with x1 < 0.45).
The ordinary linear regression has the better overall fit (smaller variability of the
residuals) whereas the robust approach has a better fit on the subset of ’usual’
observations (smaller variability of the residuals when excluding the 4 unusual ob-
servations).
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3 Non-normal outcome
To ease the discussion, we will consider a simple example where we want to compare
the outcome distribution between two groups. We assume to have no missing data
and no measurement error, and that no external covariate is relevant. In that case, we
can visualize the distribution of the outcome per group and perform the comparison
"visually". We will consider four examples (Figure 3):

• Normally distributed outcomes: no problem here.

• Student distributed outcomes: symetric and unimodal distribution but with
outliers.

• Gamma distributed outcomes: asymetric distribution. A more extreme distri-
bution would show ’outliers’

• Normally distributed outcomes with ceilling effect: many observations have
exactly the same value.

△! if any, distributional assumptions are usually made on the residual terms, e.g:

Y = Xβ + ε where ε ∼ N
(
0, σ2

)
and not on the outcome Y . Concretely, we don’t assume that the outcome is

normally distributed but that within groups (or once we remove the group effect) it
is normally distributed. In example 1, the outcome is clearly not normally distributed
(it is bimodal) but within groups it is normally distributed.
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3. Gamma 4. Ceilling effect
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Figure 3: Example of simulated non-normal outcome.

3.1 Should we worry about normality?
Most statistical procedures do not require any normality assumption to provide con-
sistent estimates with asymptotically valid confidence intervals and p-values. For
instance t-tests and linear regressions can be shown to provide consistent and asymp-
totically normally distributed estimates in large iid 1 samples, regardless to whether
they are normally distributed as soon as their first two moments are finite2. Here it
is important to distringuish between the distribution of the outcome (say Y ) and the
distribution of the parameter of interest, often the mean of Y . Averaging "normalizes"
the distribution, which is formalized in the central limit theorem, and illustrated on
Figure 4:

This means that (almost) regardless to the input data, we will be able to estimate
parameters which follows a normal distribution, i.e. for which we can quantify the
uncertainty. Results from the M-estimation theory or the maximum likelihood theory
can be used to show that finding parameters that minimize an error that is the lack
of fit relative to individual observations lead to consistent estimates. Concretely, this
means that the coverage/type 1 error control of many standard procedures such as
the t-test and the linear regression will be at their nominal level in large samples,

1independent and identically distributed
2For some statistical tests, this requires to use robust instead of model-based standard error
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Figure 4: Distribution of the estimated mean along the sample size.

even though the normality assumption is not fullfilled (Figure 5) . . . for large enough
sample sizes.
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Does that mean we should not worry about normality? No:

1. we may have a valid test / consistent estimate of a meaningless parameter.

2. we may only have a small sample.

3. our estimator may not be efficient. This is usually not a problem, except when
we loose so much efficiency that the estimate becomes very variable. This
typically happen in presence of outliers.

In the following we will discuss issues 1 to 3.
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Figure 5: Coverage of the t-test.

Note: not assuming normality complicates the understanding the group effect:
the normal distribution is one of the few distribution that can be summarized by
two, easily interpretable, independent, parameters (mean and variance).
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3.2 Issue 1: parameter of interest
By default, we generally use the mean to define our parameter of interest. In our ex-
ample the difference in mean between the two groups meaning that we summarize the
distribution of the outcome for each group by its mean (also refered to as ’expected
value’) and then take the difference between groups. This is somehow arbitrary, we
could have used another summary statistic like the standard deviation, the median
(or any other quantile), the mode, . . . . However it is not completely arbitrary:

• it is convenient to model and compute: many estimators and softwares have
been developped for modeling the mean. Also this can be done in a numerically
stable and efficient way.

• it is a natural choice if the outcome is normally distributed as the mean
and the variance fully characterize the distribution so no need to model other
summary statistics. In particular, for normal distributions the mean is equal
to the median and the mode of the distribution.

• it is easy to interpret if the outcome is normally distributed as it is the
average but also most likely value.

When the distribution is not normal, the last two arguments might not be true.
While they approximately hold if the distribution is unimodal and symmetric, they
are not valid for asymetric or bimodal distribution. For instance, the mean of a
binary variable will correspond to a value that is never observed! If we look at
Figure 6, we can see that the mean is not the most likely value (i.e. the mode).
The median is slightly closer to the mode but does not really provide a satisfactory
improvement.
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Figure 6: Mean, median, and mode two asymetric distributions.
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In such a case, it can be a good idea to define a new parameter of interest. One
could for instance apply a transformation that normalizes the distribution (e.g. log-
transformation, see Figure 7), estimate the mean of the transformed data (here
1.1 vs 1.8), and compare them across groups (here 0.7). In the case of a log-
transformation, the back-transformed difference has a nice interpration: it is a
multiplicative effect (exp(0.7)=2, i.e. the mean in the treatment is twice larger
than in the control group). So, instead of studying an additive group effect (on the
mean), the parameter of interest is a multiplicative group effect (on the
mean). Technically this requires additional assumptions, such as homoschedasticity,
that are not discussed here.
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Figure 7: Mean, median, and mode on the log-transformed data

There are other possible parameter of interest, e.g.:

• The Mann-Whitney parameter P [X ≥ Y ] + 1
2P [X = Y ]: this is the prob-

ability that a randomly chosen individual from the active group has a larger
value than a randomly individual from the control group.

→ it is closely related to the Wilcoxon-Mann-Whitney test and the AUC
→ not (completely) straightforward causal interpretation (Fay et al., 2018).
→ implementation: see the function wmwTest from the asht package

△! in presence of heteroschedasticity (variance that differs between groups)
one should use another tool (see the BuyseTest package)

• One could dichotomize the outcome to compare the probability of a high
outcome value between the two groups. This can be relevant in presence of
a important ceiling effect.

→ implementation: see the function uncondExact2x2 from the exact2x2 pack-
age for comparing proportions.
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3.3 Issue 2: handling small samples
In small samples, traditional methods will not provide a very accurate type 1 error
control or coverage as illustrated in Figure 5.

• permutation methods can be used to obtain exact type 1 error control under
exchangeability. Exchangeability is violated when testing a mean difference
between the groups while there is a difference in variance. In such a case
studentized permutation should be used instead (Chung and Romano, 2016).
→ this will produce valid p-values but no confidence intervals

• bootstrap resampling methods can be used to reduce the coverage error
error in small samples. This includes studentized non-parametric bootstrap
where the bootstrap test statistic is used to estimate the quantiles used in the
confidence intervals (instead +/- 1.96) or bias-corrected and accelerated (BCa)
bootstrap interval (see the boot package).
△! Not all bootstrap methods have good sample properties, e.g. the ’standard’
non-parametric bootstrap using the quantiles of the boostrap distribution of
the parameter of interest does not have very attractive small sample properties.

There are also analytic correction for improving the small sample properties but
there typically are specific to a statistical model/test and are not discussed here.

3.4 Issue 3: handling outliers
Most of the statistics will quantify some kind of average difference between groups.
One observation with a very large value may have large influence on this average.
If that is a concern, rank-based statistics (e.g. median, Mann-Whitney parameter,
probability of a high-value) may be seen as more fair statistics in the sense that all
observations have the same weight on the summary statistic.

△! Artificially reducing the outcome value (e.g. to be at most the mean plus 2
standard deviation) is generally a bad idea: it will induce a downward bias in
the estimated mean and can lead to inflated type 1 error (if the probability of
a large value is group dependent).
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