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Introduction Material and Methods Applications Discussion References

Lesion segmentation

Motivations

clinical practice : diagnosis of stroke, multiple sclerosis.

clinical research : objective assessment of the disease.

B gold standard for predictive models, drug evaluation.

Limits of manual segmentation

time consuming.

source of inter-observer variability.

difficult in case of complex 3D
structures.

Figure: 3D stroke lesion
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State of the art

Current approaches

level set models
Osher and Fedkiw, 2003; Weinman et al., 2003; Mouridsen et al., 2013

supervised learning (glm, machine learning)
Klëppel et al., 2011; Sweeney et al., 2013

finite Mixture Models : very popular

B unsupervised
B few parameters
B flexible modelling framework
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State of the art

Current approaches

finite Mixture Models : very popular

B unsupervised
B few parameters
B flexible modelling framework
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State of the art

Current approaches

finite Mixture Models : very popular

B unsupervised
B few parameters
B flexible modelling framework
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State of the art

Limits

noise degrades the segmentation
B univariate spatial fMM
(Woolrich et al., 2005 ; Feng, Tierney, and

Magnotta, 2012 ; Zhang et al., 2008)

white matter disease can be confused with
stroke lesion
B lead to segmentation errors
B volume over-estimation

⇒ need for a regional approach
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(Woolrich et al., 2005 ; Feng, Tierney, and

Magnotta, 2012 ; Zhang et al., 2008)

white matter disease can be confused with
stroke lesion
B lead to segmentation errors
B volume over-estimation

⇒ need for a regional approach
stroke lesion

white matter disease
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Objective

Propose an unsupervised lesion segmentation algorithm robust
to noise and artefacts :

allowing multivariate characterization of the lesion

with a spatial regularization step :
B local regularization for noise
B regional regularization for artefacts
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fMM - General Framework

Markov Random field : n sites where we observe an intensity Y

Mixture assumption : the observed intensity is issued from a
mixture of G groups :

P [Yi |Θ] =

G
∑

g=1

P [Yi |ξi = g , θg ]P [ξi = g ]

with

ξi : group membership of observation i

θg : the distribution parameters of group g

P [ξi = g ] : prior group membership of i for group g

Ozenne et al. Lesion Segmentation with regularized fMM Applied statistics 6 / 21



Introduction Material and Methods Applications Discussion References

Mean Field Approximation (MFA)

P [Y |Θ] =

n
∏

i=1

?? (no more independance)

Mean field approximation : the neighboring group memberships
are fixed to their expectation ξV(i) (Zhang, 1992) :

P
MFA [ξ] =

n
∏

i=1

P
[

ξi |ξV(i)

]

≈ P [ξ]

One can show that the likelihood becomes :

P [Y |Θ] =

n
∏

i=1

G
∑

g=1

P [Yi |ξi = g , θg ]P
[

ξi = g |ξV(i), ρ
]
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Probability distribution on a MRF

Hammersley-Clifford theorem

The join probability of a Markov Random Field (MRF) is a Gibbs
distribution :

P [ξ = x ] =
1

Z
exp [(ρ ∗ U)(x)]

U : spatial potential

Z : normalizing constant

We define the spatial potential as the sum of :

a local potential Uloc with intensity ρ1

a regional potential Ureg with intensity ρ2

P
[

ξi = g |ξV(i)

]

=
1

Zi

exp
[

ρ1Uloc,g (ξV(i ,1)) + ρ2Ureg ,g (ξV(i ,C))
]
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Standard Potts model

define the local neighborhood V (i , 1)

zi

Figure: Queen’s neighborhood

compute the local potential

Uloc,g (ξV(i ,1)) =
1

cardV (i , 1)

∑

j∈V(i ,1)

P
[

ξj = g
]
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Regional Potts model

define a regional neighbourhood as C neighbourhoods with
increasing range V (i , c).

compute the potential for each neighbourhood :

Uc
g (ξV(i ,c)) =

1

cardV (i , c)

∑

j∈V(i ,c)

P
[

ξj = g
]

the regional potential is the average of these potentials

Ureg (ξV(i ,c)) =
1

C

C
∑

c=1

Uc
g (ξV(i ,c))
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Local vs Regional Potential

Form

Local Potential Regional Potential
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Estimation - EM algorithm

step E : estimate the group membership ξi ,g

B initialize the membership probabilities : P [ξi = g |Yi ]

B estimate the regularized membership probabilities iteratively
over sites : P

[

ξi = g |ξV(i), ρ
]

step M : optimize the distribution Θ parameters
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Simulation setup

Scenari

Dataset 1∗ : 3 groups following normal laws with :
mean : µ = (−3, 0, 4)
variance : σ2 = (3, 1, 3)

Dataset 2 : same as scenario 1 with circular artefact

=⇒ The objective is to identify group 3 (’yellow’ group)

Groups Dataset 1 Dataset 2

−5

0

5

10

∗ same simulation as in Woolrich et al., 2005
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mean : µ = (−3, 0, 4)
variance : σ2 = (3, 1, 3)

Dataset 2 : same as scenario 1 with circular artefact

=⇒ The objective is to identify group 3 (’yellow’ group)

Model specification

3 models were compared :

M0 : ρ1 = 0 and ρ2 = 0

Mloc : ρ1 = 6 and ρ2 = 0

Mreg : ρ1 = 0 and ρ2 = 6

∗ same simulation as in Woolrich et al., 2005
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Simulation results

Non spatial fMM :

noise and artefacts.

Local regularisation :

noise correction.

Regional regularisation :

artefacts correction.

noise correction
with edge effects.
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Stroke Segmentation

MRI data

9 patients with ischemic stroke from the I-know cohort

4 ’Typical’
2 with ’Heterogeneity’
3 with ’White Matter Disease’

T2 FLAIR image at 1-month follow up

physician segmentation (reference)

Typical Heterogeneity White Matter disease
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Stroke Segmentation

main fMM settings

4 groups

2 parameters : T2 FLAIR and T2 FLAIR contro

spatial parameters estimated on ’Typical’ patients

- =

T2 FLAIR T2 FLAIR contro
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Stroke Segmentation - Results

Quality of the estimated volume (1 is the optimum) :

Quality =
Vmodel

Vreference

M0 Mloc. Mloc.&reg

White Matter disease
patient 1 1.62 1.68 1.17
patient 2 2.76 1.16 1.10
patient 3 4.85 1.41 1.29

Heterogeneity
patient 4 0.879 0.933 0.932
patient 5 0.935 0.975 0.975
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Stroke Segmentation - Results

Intensity M0 Mloc. Mloc.&reg. Reference
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Conclusion

Discussion

Spatial regularization improves lesion segmentation :

B local regularization deals with noise and heterogeneity.
B regional regularization corrects artefacts (at least partially).

A good initialisation is required to find optimal convergence.

B k.means or non spatial fMM results.

Estimation of the spatial parameters is still an issue.

B automatic procedure is possible
but underestimate the regional regularization parameter ρ2

Perspectives

Integration of the functions into a package.

Validation on a larger sample and with other diseases.
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Exemple of excluded patients
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Likelihood for spatial fMM

Lv (Θ|Y ,X ) = P [Y |Θ,X ]

=
∑

Γ=(g1,...gn)∈[1;G ]n

P [Y , ξ = Γ|Θ]

≈
∑

Γ=(g1,...gn)∈[1;G ]n

n
∏

i=1

P
[

Yi , ξi = gi |Θ, ξV(i)

]

= LMFA
v (Θ|Y )

using mean field approximation
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Likelihood for spatial fMM
Then

LMFA
v (Θ|Y ,X ) =

∑

Γ=(g1,...gn)∈[1;G ]n

n
∏

i=1

P
[

Yi , ξi = gi |Θ, ξV(i)

]

=
∑

Γ=(g1,...gn)∈[1;G ]n

n
∏

i=1

P [Yi |ξi = gi , θgi ]P
[

ξi = gi |ρ, ξV(i)

]

=

n
∏

i=1

G
∑

g=1

P [Yi |ξi = g , θg ]P
[

ξi = g |ρ, ξV(i)

]

=
n
∏

i=1

G
∑

g=1

P [Yi |ξi ,g = 1, θg ]

×
1

Z
exp

[

ρ1Uloc(ξV(i),g ) + ρ2Ureg (ξV(i),g )
]
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Complete likelihood for spatial fMM
Denoting : πposterior

i ,g = P
[

ξi ,g |Yi , ξV(i),Θ
]

Lcv (Yi |Θ, ρ) =

n
∏

i=1

G
∏

g=1

(

P [Yi |ξi ,g = 1, θg ]P
[

ξi ,g = 1|ξV(i), ρ
])π

posterior
i,g

lcv (Yi |Θ, ρ) =

n
∑

i=1

G
∑

g=1

π
posterior
i ,g logP [Yi |ξi ,g = 1, θg ]

+ π
posterior
i ,g logP

[

ξi ,g = 1|ξV(i), ρ
]

B Mintensity : sum of independent weighted glm models
⇒ IWLS

B Mspatial : local and regional Potts model
⇒ quasi-Newton method (L-BFGS-B)
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Estimation of the spatial parameter - Method

Mspatial (ρ)

=

n
∑

i=1

G
∑

g=1

π
posterior
i ,g log

1

Zi

exp
[

ρ1Uloc(ξV(i),g ) + ρ2Ureg (ξV(i),g )
]

=

n
∑

i=1

G
∑

g=1

π
posterior
i ,g

(

− logZi + ρ1Uloc(ξV(i),g ) + ρ2Ureg (ξV(i),g )
)

with Zi =
∑G

g=1 exp
[

ρ1Uloc(ξV(i),g ) + ρ2Ureg (ξV(i),g )
]

Uloc and Ureg can be computed for each patient and thus also Zi .
The function to optimize is a two parameter function that is
derivable
⇒ quasi-Newton method.
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Estimation of the spatial parameter - Results

type median estimation range

local reg. (ρ1) 4.59 [4.32 − 5.17]
local and regional reg. (ρ1) 3.85 [3.47 − 4.77]
local and regional reg. (ρ2) 2.61 [0.20 − 4.08]
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Validity of MFA - Simulation
Potts model simulated by Gibbs sampling (1000 iterations).
n ranged from 100 to 1000.
ρ1 ranged from 0 to 10.
each scenario was replicated 250 times.
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Validity of MFA - Results
clear decrease in variance when n increases.
small decrease in bias when n increases.

MRI data (n ∼ 30000) : relative bias <5 % for common ρ1
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Figure: Relative bias of the ρ1 estimator
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fMMseg - Example

1 > require(fMMseg)

2 > data(data_test,package="fMMseg")

3 > str(data_test)

'data.frame': 8100 obs. of 6 variables:

$ i : int 1 2 3 4 5 6 7 8 9 10 ...

$ j : int 1 1 1 1 1 1 1 1 1 1 ...

$ group : num 1 1 1 1 1 1 1 1 1 1 ...

$ Y : num -2.97 -3.32 -5.38 -4.04 -2.49 ...

$ Y_artlinear : num -2.97 -3.32 -5.38 -4.04 -2.49 ...

$ Y_artspherique: num -2.97 -3.32 -5.38 -4.04 -2.49 ...
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fMMseg - Example
1 > res_test <- EM.launcher(G=3,data=data_test,coords=c("i","j"),

2 + distband.SR=sqrt(2),distband.LR=10,

3 + var_reg="Y_artlinear",family=gaussian(link="identity"),

4 + test.ICM=T,rho_ICM=c(6,6),

5 + test.ICMregional=T)

* initialisation by k means *

# initialisation

groupe 1 groupe 2 groupe 3

intercept 1 : -3.702351 0.02097692 4.384099

cv criteria : 0.001

*** init. spatial regularization ***

### Iteration FINALE 20 (lv = -15521.41)

groupe 1 groupe 2 groupe 3

intercept 1 : -3.0083412 0.1448128 3.8479213

sigma 1 : 1.7505830 1.1915927 1.8669002

<prior> : 0.3333333 0.3333333 0.3333333

<posterior> : 0.3330471 0.3308790 0.3360739

ICM parameters : 6 6

*** Convergence ***

*** Export ***Ozenne et al. Lesion Segmentation with regularized fMM Applied statistics 31 / 21
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