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Motivation

Objective: decide whether a treatment is beneficial
→ for a give time horizon 1 year

Material: registry data
observational data (i.e. non-randomized)
long term follow-up
large number of patients

What do we mean by beneficial:
does the treatment reduce the 1-year risk of developing the
disease ?
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Plan
1 Estimating a 1-year risk of a disease using registry data
→ model checking [Cox]

2 Estimating a treatment effect using registry data
→ model checking [new strategy]
e.g. Staerk et al. 2016:
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Absolute risk
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Definition
1-year absolute risk:

chance that a person will be diagnosed with the event
in 1 year
→ depends on the risk of the event λevent
→ depends on the risk of death λdeath

revent(t|X ) =
∫ t

0︸︷︷︸
addition over time

S0(s|X )︸ ︷︷ ︸
survival at to time s

λevent(s|X )︸ ︷︷ ︸
immediate risk of
the event at time s

ds

X : covariates like age, gender . . .

Considering registry data, are involved:
the event of interest
competing risks, e.g. death
→ will prevent the observation of the event
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Cause specific Cox model

One Cox regression for each competing risk:

λevent(t|X ) = λ0,event(t) exp(Xβevent)

λdeath(t|X ) = λ0,death(t) exp(Xβdeath)

We can then estimate the overall survival.
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Cause specific Cox model

One Cox regression for each competing risk:

λevent(t|X ) = λ0,event(t) exp(Xβevent)

λdeath(t|X ) = λ0,death(t) exp(Xβdeath)

We can then estimate the overall survival.

S0(t|X ) = exp
(
−
∫ t

0
λdeath(s|X ) + λevent(s|X )ds

)
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In

1 > library(riskRegression)
2 > data(Melanoma)
3 > fit1 <- CSC(formula=Hist(time,status)~sex+invasion+age,
4 + data=Melanoma)
5 fit1$models$`Cause 1`

Call:
survival::coxph(...)

coef exp(coef) se(coef) z p
sexMale 0.66338 1.94135 0.26632 2.49 0.01274
invasionlevel.1 1.03717 2.82122 0.32824 3.16 0.00158
invasionlevel.2 1.40323 4.06830 0.38074 3.69 0.00023
age 0.00982 1.00987 0.00834 1.18 0.23884
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In

1 > head(Melanoma[1:2,c("sex","invasion","age")])
sex invasion age

1 Male level.1 76
2 Male level.0 56

1 > predictRisk(fit1, newdata = Melanoma[1:2,],
2 cause = 1, time = 365.25)

365.25
[1,] 0.06441670
[2,] 0.01992289
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Summary

We can easily compute the absolute risk
using one Cox model for the event of interest
using another Cox model for the competing events

But now we have to check the assumptions for each Cox model !
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Cox model assumptions

Assumptions:
1 proportional hazard (PH) assumption
2 (linear) functional form
3 (absence of) interaction

[Not covered] non-informative censoring, influential observations
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Checking Cox model assumptions

Model checking is more complex compared to a linear regression
several types of residuals
many different diagnostic tools

- validity of the null hypothesis
e.g. PH vs. non PH

- against a specific alternative hypothesis
e.g. quadratic vs. linear effect age

11 / 41



Absolute risk Average treatment effect Checking ATE assumptions Summary

(1) Checking Proportional hazard assumption
Cox model:

λ(t|X ) = λ0(t)eβX

Here we assume β ⊥⊥ t

Visual checking with Kaplan Meier
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(1) Checking Proportional hazard assumption
Cox model:

λ(t|X ) = λ0(t)eβX

Here we assume β ⊥⊥ t

Statistical test: (H0) the PH assumption holds,
i.e. the cumulative score process follows a brownian bridge

> plot(gof:::cumres(coxph))
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KS−test: p=0

CvM−test: p=0
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(1) Remedies for non proportional hazard
Strategy 1: find the problematic variable and the type of time
dependency

Display of the Schoenfeld residuals (Grambsch et al. 1994)

E [rij ] ≈ βj(ti)− β̂j
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(1) Remedies for non proportional hazard
Strategy 1: find the problematic variable and the type of time
dependency

Use a Cox model with time varying effects
λ(t|X ) = λ0(t)eβ(t)X
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> plot(timereg::timecox(Surv(time,status) ∼ z,
data = d))
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(1) Remedies for non proportional hazard

Strategy 1: find the problematic variable and the type of time
dependency

Strategy 2: stratification
Cox model:

λ(t|X , treatment) = λ0(t)eβX+γtreatment

Stratified Cox model:

λ(t|X , treatment) = λ0,treatment(t)eβX
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(2) Checking the functional form

λ(t|X ,T ) = λ0eβX

Here we assume the log of the risk increase linearly with X , e.g.
with age.

Diagnostic tools:
Display martingale residuals
Comparison with model
including a quadratic term
or spline
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(3) Checking possible interactions

λ(t|X ,T ) = λ0eβX+γtreatment

Here we assume that the risk increase independently with X and
with treatment

Diagnostic tools:
Display martingale residuals
Comparison with a model
with interactions
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Limits

In practice model validation is tedious:
large number of tests

- at least 2 per variables + PH
(i.e. linearity and interaction with treatment)

- competing risks: two Cox models to check

unclear alternative hypothesis
- residual plot can be hard to interpret

large n small p
overpowered tests (Grøn et al. 2016)
→ may detect unimportant deviations to hypothesis

16 / 41



Absolute risk Average treatment effect Checking ATE assumptions Summary

Average treatment effect
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Observational vs. randomized study

Randomized experiment
eliminates confounding
balances all risk factors: known AND unknown

→ causal interpretation

Observational studies
can ONLY account for known and measured risk factors

→ establish associations

Causal inference theory:
causal interpretation (under hypothesis) in observational
studies
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Counterfactual outcomes

Hypothetical world

Ti = 1 Ti = 0

Yi
1
 = 1 Yi

0
 = 0
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Counterfactual outcomes

Hypothetical world

We can measure for individual i at time t:
Y T=1

i (t), outcome using intervention 1
Y T=0

i (t), outcome using intervention 0

We can estimate

Y T=1
i (t)− Y T=0

i (t)

the individual causal effect at t

Ti = 1 Ti = 0

Yi
1
 = 1 Yi

0
 = 0
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Counterfactual outcomes

Real world

T = 1 T = 0

 Y
1

 Y
0
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Counterfactual outcomes
Real world

We only can measure :
Y T=1

i (t) OR Y T=0
i (t) T = 1 T = 0

 Y
1

 Y
0

We can infer the average causal effect:
ACE (t) = E

[
Y T=1(t)− Y T=0(t)

]
= E

[
Y T=1(t)

]
− E

[
Y T=0(t)

]
e.g. (no confounder)

ÂCE (t) =
∑n1

i=1 Y T=1
i (t)−

∑n2
j=1 Y T=0

j (t)
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G formula
Real world: confounders

T = 1 T = 0

 Y
1

 Y
0

Model

21 / 41



Absolute risk Average treatment effect Checking ATE assumptions Summary

G formula

Real world: confounders

Statistical model: E [Y |X ,T ]

ACE (t) =
n∑

i=1
E [Yi(t)|Xi ,T = 1]

−E [Yi(t)|Xi ,T = 0]

Here Y (t)|X ,T is the absolute risk

T = 1 T = 0

 Y
1

 Y
0

Model

21 / 41



Absolute risk Average treatment effect Checking ATE assumptions Summary

Workflow (Christiansen et al. 2015)

1 Define the population of interest
Patients with first-time ischemic stroke (n=19223)
Exclusion criteria: atrial fibrillation ...

2 Define the intervention (T )
3 Define the event of interest (Y )
4 Identify the possible competing events (D)
5 Identify the possible confounders/pronostic variable (X )
6 Define a statistical model for relating Y , T , and X
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Workflow (Christiansen et al. 2015)

1 Define the population of interest
2 Define the intervention (T )

e.g.: antiplatelet regimens for secondary stroke prevention
T=0: ASA
T=1: Clopidogrel
T=2: ASA+Clopidogrel

3 Define the event of interest (Y )
4 Identify the possible competing events (D)
5 Identify the possible confounders/pronostic variable (X )
6 Define a statistical model for relating Y , T , and X
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Workflow (Christiansen et al. 2015)

1 Define the population of interest
2 Define the intervention (T )
3 Define the event of interest (Y )

e.g.: fatal or non fatal ischemic stroke
4 Identify the possible competing events (D)
5 Identify the possible confounders/pronostic variable (X )
6 Define a statistical model for relating Y , T , and X
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Workflow (Christiansen et al. 2015)

1 Define the population of interest
2 Define the intervention (T )
3 Define the event of interest (Y )
4 Identify the possible competing events (D)

e.g.: death not related to a stroke event
5 Identify the possible confounders/pronostic variable (X )
6 Define a statistical model for relating Y , T , and X
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Workflow (Christiansen et al. 2015)

1 Define the population of interest
2 Define the intervention (T )
3 Define the event of interest (Y )
4 Identify the possible competing events (D)
5 Identify the possible confounders/pronostic variable (X )

e.g. age, hypertension, ...
6 Define a statistical model for relating Y , T , and X
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Workflow (Christiansen et al. 2015)

1 Define the population of interest
2 Define the intervention (T )
3 Define the event of interest (Y )
4 Identify the possible competing events (D)
5 Identify the possible confounders/pronostic variable (X )
6 Define a statistical model for relating Y , T , and X

A two-cause specific Cox model:

λY (t|X ,T ) = λY
0 eβY X+γY T

λD(t|X ,T ) = λD
0 eβDX+γDT
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Computation of the G-formula - in
Package: riskRegression https://github.com/tagteam/riskRegression

Function: ate

Arguments
object: outcome model which describes how event risk
depends on treatment and covariates
data
treatment: name of the treatment variable in data
times: time points at which to evaluate risks
cause: the cause of interest
B: the number of bootstrap replications used to compute the
confidence interval.
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G-formula (software)

No competing risks:
1 > head(dtSurv)

time strokeEvent Treatment Age
1: 4.901849 FALSE T0 59.78796
2: 4.555159 TRUE T0 60.66406
3: 6.681136 FALSE T1 58.76296

1 > mCox <- coxph(Surv(time,strokeEvent)~ Treatment + Age,
2 + data = dtSurv)
3

4 > ate(mCox, data = dtSurv, treatment = "Treatment",
5 + times = 12, B = 1000)
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G-formula (software)
Competing risks:

1 > head(dtCR)
time eventtype eventtypeNum Treatment Age

1: 2.9 stroke 1 T0 58.96060
2: 9.3 censoring 0 T0 59.37469
3: 2.0 death 2 T0 59.36296

1 > mCSC <- CSC(
2 + list(Hist(time,eventtypeNum)~ Treatment + Age,
3 + Hist(time,eventtypeNum)~ Age),
4 + data = dtCR
5 + )
6

7 > ate(mCSC,data = dtCR, treatment = "Treatment",
8 + times = 12, cause = 1, B = 1000)
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G-formula (software output)
Absolute risk of stroke relapse

Treatment meanRisk meanRiskBoot lower upper n.boot
1: T0 0.111 0.111 0.101 0.123 1000
2: T1 0.080 0.080 0.071 0.090 1000
3: T2 0.078 0.078 0.073 0.082 1000
Difference in absolute risk of stroke between treatments:

Treatment.A Treatment.B time diff
1: T1 T0 12 0.032
2: T2 T0 12 0.034
3: T2 T1 12 0.002

diffMeanBoot diff.lower diff.upper n.boot
1: 0.032 0.017 0.046 1000
2: 0.033 0.022 0.046 1000
3: 0.002 0.002 0.013 1000
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Assumptions

no unmeasured confounders
positivity
well-defined intervention
correctly specified model
B proportional hazard assumption
B (linear) functional form
B (absence of) interaction

[Not covered] non-informative censoring,
influential observations
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Assumptions

no unmeasured confounders
positivity
well-defined intervention
correctly specified model
B proportional hazard assumption
B (linear) functional form
B (absence of) interaction

[Not covered] non-informative censoring,
influential observations

T = 1 T = 0

? ?
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Assumptions

no unmeasured confounders
positivity
well-defined intervention
correctly specified model
B proportional hazard assumption
B (linear) functional form
B (absence of) interaction

[Not covered] non-informative censoring,
influential observations
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ÂTE : −0.513[−0.571;−0.441] vs −0.244[−0.281;−0.206]
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Assumptions

no unmeasured confounders
positivity
well-defined intervention
correctly specified model
B proportional hazard assumption
B (linear) functional form
B (absence of) interaction

[Not covered] non-informative censoring,
influential observations
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ÂTE : −0.164[−0.221;−0.107] vs −0.200[−0.264;−0.132]
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Assumptions

no unmeasured confounders
positivity
well-defined intervention
correctly specified model
B proportional hazard assumption
B (linear) functional form
B (absence of) interaction

[Not covered] non-informative censoring,
influential observations
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ÂTE : −0.110[−0.169;−0.049] vs −0.267[−0.302;−0.228]
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Assumptions

no unmeasured confounders
positivity
well-defined intervention
correctly specified model
B proportional hazard assumption
B (linear) functional form
B (absence of) interaction

[Not covered] non-informative censoring,
influential observations
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Proposed approach

Compare alternative modelling strategies to the Cox model
→ check result sensitivity to model assumptions

Alternative models:

4 increased flexibility:
→ less biased

8 increased complexity:
→ harder to interpret
→ increased variance of the estimates
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Extensions/alternatives to Cox model

relax PH assumption:
-Cox strata stratified Cox model
-Others Cox model with time varying effects

logistic risk regression

include non-linear relationships/interactions
-Cox spline regression spline in Cox model
-RF random survival Forest
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Simulation study

Investigate the bias/variance trade-off

Three scenari:
(I) violation of proportional hazard assumption
(II) mispecification of the functional form of a risk factor
(III) missing interaction with the treatment variable
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Results - proportional hazard

Scenario I Non proportional effect of treatment
ORT (t ≤ 5) 0.8 1.7 7.4
ORT (t ≥ 5) 0.4 0.4 0.4

ATE 0.181 -0.002 -0.068

Cox -0.049 (0.05) -0.082 (0.083) -0.062 (0.062)
Cox strata 0.001 (0.011) 0 (0.01) -0.01 (0.013)
Random Forest 0.001 (0.01) 0 (0.009) 0.005 (0.007)

Table: last three rows:
bias (root mean square error) of the ATE estimated by the models
ORT odd ratio for the treatment effect
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Results - functional form

Scenario II Non linear effect of covariate
ORT 0.4 0.4 0.4
ORAge 0.8 2.7 7.4

ATE 0.338 0.338 0.338

Cox 0.001 (0.01) 0 (0.01) 0 (0.01)
Cox strata 0.001 (0.011) -0.001 (0.011) -0.001 (0.011)
Random Forest -0.003 (0.011) -0.004 (0.012) -0.004 (0.012)

Table: last three rows:
bias (root mean square error) of the ATE estimated by the models
ORT odd ratio for the treatment effect
ORAge odd ratio for the non linear effect of the risk factor
(increased risk after 50 years)
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Results - interaction

Scenario III Interaction between treatment and covariate
ORT 0.4 0.4 0.4
ORT∗gender 1.6 2.7 7.4

ATE 0.075 -0.011 -0.097

Cox -0.01 (0.014) -0.04 (0.041) -0.146 (0.146)
Cox strata 0.001 (0.011) 0 (0.011) 0.001 (0.01)
Random Forest 0.001 (0.011) 0 (0.011) 0 (0.01)

Table: last three rows:
bias (root mean square error) of the ATE estimated by the models
ORT odd ratio for the treatment effect
ORT∗gender odd ratio for interaction between gender and treatment
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Discussion

Alternative models:

4 No noticeable increase of the variance of the estimates
4 For categorical variables, a fully stratified Cox model is robust

against:
- non PH
- interaction between variables

4 For dealing with continuous variables, use random Forests
8 extra-parameters to be tuned (e.g. number of trees)

8 Increased computation time
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Application
Objective:

to compare 3 antiplatelet regimens using the danish registry
n = 19223 patients
time horizon: 1 year

Outcome:
date of first stroke event (n=1610, 8.4%)

Competing event:
death (n=677, 3.5%)

Possible confounders:
many (p=10) including age, gender, . . .

35 / 41



Absolute risk Average treatment effect Checking ATE assumptions Summary

Checking Proportional hazard assumption

Tests:1

not significant
except for one treatment
modality

We can stratify on treatment! S
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1based on the score process
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Checking functional form

Variable age
additional risk after
75 years
approx. linear
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Models

Variables:
Continuous: age
Categorical: treatment, gender, year

CSC Two cause specific Cox model
CSC inter CSC

+ interactions between treatment and gender, age, year
+ cubic spline on age

CSC strata stratified CSC on treatment, gender, year
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naive Cox model vs. alternatives

violation of PH assumption impacts the estimate of NTT
at early times
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Summary
Cox models can be used to assess :
B disease incidence (absolute risk)
B average treatment effect

Relies on several assumptions, e.g.:
B proportional hazard
B linear effect, no interaction between variables

Model checking:
B Hope: no unmeasured confounders
B usual diagnostic tools are of limited interest for large p or n
B proposal : assess the impact of Cox model assumptions using

alternative models
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