Assessing treatment effect using registry data

Brice Ozenne

Dantrip 28-10-16

Motivation

Objective: decide whether a treatment is beneficial
\rightarrow for a give time horizon
Material: registry data

- observational data (i.e. non-randomized)
- long term follow-up
- large number of patients

What do we mean by beneficial:

- does the treatment reduce the 1-year risk of developing the disease?

Plan

(1) Estimating a 1-year risk of a disease using registry data
(2) Estimating a treatment effect using registry data
e.g. Staerk et al. 2016:

Stroke/thromboembolism

Plan

(1) Estimating a 1-year risk of a disease using registry data \rightarrow model checking [Cox]
(2) Estimating a treatment effect using registry data \rightarrow model checking [new strategy]
e.g. Staerk et al. 2016:

Stroke/thromboembolism

Absolute risk

Definition

1-year absolute risk:

- chance that a person will be diagnosed with the event in 1 year
\rightarrow depends on the risk of the event $\lambda_{\text {event }}$ \rightarrow depends on the risk of death $\lambda_{\text {death }}$

Considering registry data, are involved: - the cuent of interest

- competing risks, e.g. death \rightarrow mill nrevent the ohservation of the event

Definition

1-year absolute risk:

- chance that a person will be diagnosed with the event in 1 year
\rightarrow depends on the risk of the event $\lambda_{\text {event }}$
covariates like age, gender
Considering registry data, are involved:
- the event of interest
- competing risks, e.g. death
\rightarrow will prevent the observation of the event

Definition

1-year absolute risk:

- chance that a person will be diagnosed with the event in 1 year
\rightarrow depends on the risk of the event $\lambda_{\text {event }}$
\rightarrow depends on the risk of death $\lambda_{\text {death }}$

X: covariates like age, gender
Considering registry data, are involved:

- the event of interest
- competing risks, e.g. death
\rightarrow will prevent the observation of the event

Definition

1-year absolute risk:

- chance that a person will be diagnosed with the event in 1 year
\rightarrow depends on the risk of the event $\lambda_{\text {event }}$
\rightarrow depends on the risk of death $\lambda_{\text {death }}$

$$
r_{\text {event }}(t \mid X)=\underbrace{\int_{0}^{t}}_{\text {addition over time }} \underbrace{\substack{\text { ime event at time } s}}_{\text {survival at to time simmediate risk of }} \underbrace{\lambda_{\text {ever }}}_{\begin{array}{c}
\text { the } \\
S_{0}(s \mid X)
\end{array} \underbrace{}_{\text {event }}(s \mid X)} d s
$$

X : covariates like age, gender ...
Considering registry data, are involved:

- the event of interest
- competing risks, e.g. death
\rightarrow will prevent the observation of the event

Cause specific Cox model

One Cox regression for each competing risk:

$$
\begin{aligned}
& \lambda_{\text {event }}(t \mid X)=\lambda_{0, \text { event }}(t) \exp \left(X \beta_{\text {event }}\right) \\
& \lambda_{\text {death }}(t \mid X)=\lambda_{0, \text { death }}(t) \exp \left(X \beta_{\text {death }}\right)
\end{aligned}
$$

Cause specific Cox model

One Cox regression for each competing risk:

$$
\begin{aligned}
& \lambda_{\text {event }}(t \mid X)=\lambda_{0, \text { event }}(t) \exp \left(X \beta_{\text {event }}\right) \\
& \lambda_{\text {death }}(t \mid X)=\lambda_{0, \text { death }}(t) \exp \left(X \beta_{\text {death }}\right)
\end{aligned}
$$

We can then estimate the overall survival.

- no event
- not dead

Cause specific Cox model

One Cox regression for each competing risk:

$$
\begin{aligned}
& \lambda_{\text {event }}(t \mid X)=\lambda_{0, \text { event }}(t) \exp \left(X \beta_{\text {event }}\right) \\
& \lambda_{\text {death }}(t \mid X)=\lambda_{0, \text { death }}(t) \exp \left(X \beta_{\text {death }}\right)
\end{aligned}
$$

We can then estimate the overall survival.

$$
S_{0}(t \mid X)=\exp \left(-\int_{0}^{t} \lambda_{\text {death }}(s \mid X)+\lambda_{\text {event }}(s \mid X) d s\right)
$$

In \mathbb{R}

1 > library(riskRegression)
$2>\operatorname{data}(M e l a n o m a)$
3 > fit1 <- CSC(formula=Hist(time,status)~sex+invasion+age,
4 + data=Melanoma)
5 fit1\$models\$`Cause 1`
Call:
survival:: coxph(...)

| | coef | $\exp ($ coef $)$ | se(coef) | z | p |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| sexMale | 0.66338 | 1.94135 | 0.26632 | 2.49 | 0.01274 |
| invasionlevel.1 | 1.03717 | 2.82122 | 0.32824 | 3.16 | 0.00158 |
| invasionlevel.2 | 1.40323 | 4.06830 | 0.38074 | 3.69 | 0.00023 |
| age | 0.00982 | 1.00987 | 0.00834 | 1.18 | 0.23884 |

$\ln \mathbb{R}$

1 > head(Melanoma[1:2,c("sex","invasion","age")])
sex invasion age
1 Male level. 176
2 Male level. 056
1 > predictRisk(fit1, newdata = Melanoma[1:2,],
2

$$
\text { cause }=1 \text {, time }=365.25 \text {) }
$$

$$
365.25
$$

[1,] 0.06441670
[2,] 0.01992289

Summary

We can easily compute the absolute risk

- using one Cox model for the event of interest
- using another Cox model for the competing events

But now we have to check the assumptions for each Cox model !

Cox model assumptions

Assumptions:
(1) proportional hazard (PH) assumption
(2) (linear) functional form
(3) (absence of) interaction
[Not covered] non-informative censoring, influential observations

Checking Cox model assumptions

Model checking is more complex compared to a linear regression

- several types of residuals
- many different diagnostic tools
- validity of the null hypothesis
e.g. PH vs. non PH
- against a specific alternative hypothesis
e.g. quadratic vs. linear effect age

(1) Checking Proportional hazard assumption

Cox model:

$$
\lambda(t \mid X)=\lambda_{0}(t) e^{\beta X}
$$

Here we assume $\beta \Perp t$

- Visual checking with Kaplan Meier

(1) Checking Proportional hazard assumption

Cox model:

$$
\lambda(t \mid X)=\lambda_{0}(t) e^{\beta X}
$$

Here we assume $\beta \Perp t$

- Statistical test: $\left(\mathcal{H}_{0}\right)$ the PH assumption holds, i.e. the cumulative score process follows a brownian bridge > plot(gof:: :cumres(coxph))

(1) Remedies for non proportional hazard Strategy 1: find the problematic variable and the type of time dependency
- Display of the Schoenfeld residuals (Grambsch et al. 1994)

$$
\mathbb{E}\left[r_{i j}\right] \approx \beta_{j}\left(t_{i}\right)-\hat{\beta}_{j}
$$

(1) Remedies for non proportional hazard Strategy 1: find the problematic variable and the type of time dependency

- Use a Cox model with time varying effects

$$
\lambda(t \mid X)=\lambda_{0}(t) e^{\beta(t) X}
$$

z1

> plot(timereg::timecox (Surv(time,status) \sim z,

(1) Remedies for non proportional hazard

Strategy 1: find the problematic variable and the type of time dependency

Strategy 2: stratification
Cox model:

$$
\lambda(t \mid X, \text { treatment })=\lambda_{0}(t) e^{\beta X+\gamma \text { treatment }}
$$

Stratified Cox model:

$$
\lambda(t \mid X, \text { treatment })=\lambda_{0, \text { treatment }}(t) e^{\beta X}
$$

(2) Checking the functional form

$$
\lambda(t \mid X, T)=\lambda_{0} e^{\beta X}
$$

Here we assume the log of the risk increase linearly with X, e.g. with age.

Diagnostic tools:

- Display martingale residuals
- Comparison with model including a quadratic term or spline

(3) Checking possible interactions

$$
\lambda(t \mid X, T)=\lambda_{0} e^{\beta X+\gamma t r e a t m e n t}
$$

Here we assume that the risk increase independently with X and with treatment

Diagnostic tools:

- Display martingale residuals
- Comparison with a model with interactions

Limits

In practice model validation is tedious:

- large number of tests
- at least 2 per variables + PH
(i.e. linearity and interaction with treatment)
- competing risks: two Cox models to check
- unclear alternative hypothesis
- residual plot can be hard to interpret
- large n small p
- overpowered tests (Grøn et al. 2016)
\rightarrow may detect unimportant deviations to hypothesis

Average treatment effect

Observational vs. randomized study

Randomized experiment

- eliminates confounding
- balances all risk factors: known AND unknown
\rightarrow causal interpretation

Observational studies

- can ONLY account for known and measured risk factors
\rightarrow establish associations

Causal inference theory:

- causal interpretation (under hypothesis) in observational studies

Counterfactual outcomes

$\mathcal{H y p o t h e t i c a l}$ world

Counterfactual outcomes

Hypothetical world

We can measure for individual i at time t : $Y_{i}^{T=1}(t)$, outcome using intervention 1 $Y_{i}^{T=0}(t)$, outcome using intervention 0

We can estimate

$$
Y_{i}^{T=1}(t)-Y_{i}^{T=0}(t)
$$

the individual causal effect at t

Counterfactual outcomes

Real world

Counterfactual outcomes

Real world

We only can measure :

$$
Y_{i}^{T=1}(t) \quad \mathrm{OR} \quad Y_{i}^{T=0}(t)
$$

We can infer the average causal effect:

$$
\begin{aligned}
\operatorname{ACE}(t)= & \mathbb{E}\left[Y^{T=1}(t)-Y^{T=0}(t)\right] \\
= & \mathbb{E}\left[Y^{T=1}(t)\right]-\mathbb{E}\left[Y^{T=0}(t)\right] \\
\text { e.g. } & \text { (no confounder) } \\
\widehat{A C E}(t)= & \sum_{i=1}^{n_{1}} Y_{i}^{T=1}(t)-\sum_{j=1}^{n_{2}} Y_{j}^{T=0}(t)
\end{aligned}
$$

G formula

Real world: confounders

G formula

Real world: confounders
Statistical model: $\mathbb{E}[Y \mid X, T]$

$$
\begin{aligned}
\operatorname{ACE}(t)= & \sum_{i=1}^{n} \mathbb{E}\left[Y_{i}(t) \mid X_{i}, T=1\right] \\
& -\mathbb{E}\left[Y_{i}(t) \mid X_{i}, T=0\right]
\end{aligned}
$$

Here $Y(t) \mid X, T$ is the absolute risk

Workflow (Christiansen et al. 2015)

(1) Define the population of interest

Patients with first-time ischemic stroke ($n=19223$)
Exclusion criteria: atrial fibrillation ...
(2) Define the intervention (T)
(3) Define the event of interest (Y)

Workflow (Christiansen et al. 2015)

(1) Define the population of interest
(2) Define the intervention (T)
e.g.: antiplatelet regimens for secondary stroke prevention T=0: ASA
T=1: Clopidogrel
T=2: ASA+Clopidogrel
(3) Define the event of interest (Y)
(C) Identify the possible competing events (D)

Workflow (Christiansen et al. 2015)

(1) Define the population of interest
(2) Define the intervention (T)
(3) Define the event of interest (Y)
e.g.: fatal or non fatal ischemic stroke
(4) Identify the possible competing events (D)
(3) Identify the possible confounders/pronostic variable (X)

Workflow (Christiansen et al. 2015)

(1) Define the population of interest
(2) Define the intervention (T)
(3) Define the event of interest (Y)
(9) Identify the possible competing events (D)

```
e.g.: death not related to a stroke event
```(3) Identify the possible confounders/pronostic variable \((X)\) (6) Define a statistical model for relating

\section*{Workflow (Christiansen et al. 2015)}
(1) Define the population of interest
(2) Define the intervention (\(T\))
(3) Define the event of interest \((Y)\)
(9) Identify the possible competing events \((D)\)
(5) Identify the possible confounders/pronostic variable \((X)\) e.g. age, hypertension, ...

\section*{Workflow (Christiansen et al. 2015)}
(1) Define the population of interest
(2) Define the intervention \((T)\)
(3) Define the event of interest \((Y)\)
(4) Identify the possible competing events (\(D\))
(6) Identify the possible confounders/pronostic variable \((X)\)
(1) Define a statistical model for relating \(Y, T\), and \(X\)

A two-cause specific Cox model:
\[
\begin{aligned}
& \lambda^{Y}(t \mid X, T)=\lambda_{0}^{Y} e^{\beta^{Y} X+\gamma^{Y} T} \\
& \lambda^{D}(t \mid X, T)=\lambda_{0}^{D} e^{\beta^{D} X+\gamma^{D} T}
\end{aligned}
\]

\section*{Computation of the G-formula - in}

Package: riskRegression
https://github.com/tagteam/riskRegression Function: ate

Arguments
- object: outcome model which describes how event risk depends on treatment and covariates
- data
- treatment: name of the treatment variable in data
- times: time points at which to evaluate risks
- cause: the cause of interest
- B: the number of bootstrap replications used to compute the confidence interval.

\section*{G-formula (software)}

No competing risks:
> head (dtSurv)
\begin{tabular}{|c|c|c|c|c|}
\hline & time & nt & & Age \\
\hline 1 & 4.901849 & FALSE & & 59.78796 \\
\hline 2 & 4.555159 & TRUE & T0 & 60.66406 \\
\hline 3 & 6.681136 & FALSE & T1 & 58.76296 \\
\hline \multicolumn{5}{|l|}{```
> mCox <- coxph(Surv(time,strokeEvent)~ Treatment + Age,
+ data = dtSurv)
```} \\
\hline \multicolumn{5}{|l|}{```
    ate(mCox, data = dtSurv, treatment = "Treatment",
+ times = 12, B = 1000)
```} \\
\hline
\end{tabular}

\section*{G-formula (software)}

Competing risks:
> head(dtCR)
time eventtype eventtypeNum
1: Treatment Age

\section*{G-formula (software output)}

Absolute risk of stroke relapse
Treatment meanRisk meanRiskBoot lower upper n.boot
\begin{tabular}{lllllll}
\(1:\) & T0 & 0.111 & 0.111 & 0.101 & 0.123 & 1000 \\
\(2:\) & T1 & 0.080 & 0.080 & 0.071 & 0.090 & 1000 \\
\(3:\) & T2 & 0.078 & 0.078 & 0.073 & 0.082 & 1000
\end{tabular}

Difference in absolute risk of stroke between treatments:
\begin{tabular}{lrrrlr}
Treatment.A & Treatment.B & time & diff & \\
1: & T1 & T0 & 12 & 0.032 & \\
2: & T2 & T0 & 12 & 0.034 & \\
3: & T2 & T1 & 12 & 0.002 & \\
& diffMeanBoot & diff. lower & diff. upper & n. boot \\
1: & 0.032 & 0.017 & \multicolumn{2}{c}{0.046} & 1000 \\
2: & 0.033 & 0.022 & 0.046 & 1000 \\
3: & 0.002 & 0.002 & 0.013 & 1000
\end{tabular}

\section*{Assumptions}
- no unmeasured confounders
- positivity
- well-defined intervention
-

\section*{Assumptions}
- no unmeasured confounders
- positivity
-
- correctly specified model

\section*{Assumptions}
- no unmeasured confounders
- positivity
- well-defined intervention
- correctly specified model

\section*{Assumptions}
- no unmeasured confounders
- positivity
- well-defined intervention
- correctly specified model
\(\triangleright\) proportional hazard assumption

\(\widehat{\text { ATE }}:-0.513[-0.571 ;-0.441]\) vs \(-0.244[-0.281 ;-0.206]\)

\section*{Assumptions}
- no unmeasured confounders
- positivity
- well-defined intervention
- correctly specified model
\(\triangleright\) proportional hazard assumption
\(\triangleright\) (linear) functional form
[Not covered] non-informative censoring,

\(\widehat{\text { ATE }}:-0.164[-0.221 ;-0.107]\) vs \(-0.200[-0.264 ;-0.132]\)

\section*{Assumptions}
- no unmeasured confounders
- positivity
- well-defined intervention
- correctly specified model
\(\triangleright\) proportional hazard assumption
\(\triangleright\) (linear) functional form
\(\triangleright\) (absence of) interaction

\(\widehat{\text { ATE }}:-0.110[-0.169 ;-0.049]\) vs \(-0.267[-0.302 ;-0.228]\)

\section*{Assumptions}
- no unmeasured confounders
- positivity
- well-defined intervention
- correctly specified model
\(\triangleright\) proportional hazard assumption
\(\triangleright\) (linear) functional form
\(\triangleright\) (absence of) interaction
[Not covered] non-informative censoring, influential observations

\section*{Proposed approach}
- Compare alternative modelling strategies to the Cox model \(\rightarrow\) check result sensitivity to model assumptions

Alternative models:
\(\checkmark\) increased flexibility:
\(\rightarrow\) less biased
\(X\) increased complexity:
\(\rightarrow\) harder to interpret
\(\rightarrow\) increased variance of the estimates

\section*{Extensions/alternatives to Cox model}
- relax PH assumption:
-Cox strata stratified Cox model
-Others Cox model with time varying effects logistic risk regression
- include non-linear relationships/interactions
-Cox spline regression spline in Cox model
-RF random survival Forest

\section*{Simulation study}

Investigate the bias/variance trade-off
Three scenari:
(I) violation of proportional hazard assumption
(II) mispecification of the functional form of a risk factor
(III) missing interaction with the treatment variable

\section*{Results - proportional hazard}
\begin{tabular}{llll}
\hline Scenario I & \multicolumn{3}{c}{ Non proportional effect of treatment } \\
\hline\(O R_{T}(t \leq 5)\) & 0.8 & 1.7 & 7.4 \\
\(O R_{T}(t \geq 5)\) & 0.4 & 0.4 & 0.4 \\
& & & \\
ATE & 0.181 & -0.002 & -0.068 \\
& & & \\
Cox & \(-0.049(0.05)\) & \(-0.082(0.083)\) & \(-0.062(0.062)\) \\
Cox strata & \(0.001(0.011)\) & \(0(0.01)\) & \(-0.01(0.013)\) \\
Random Forest & \(0.001(0.01)\) & \(0(0.009)\) & \(0.005(0.007)\)
\end{tabular}

Table: last three rows:
bias (root mean square error) of the ATE estimated by the models \(O R_{T}\) odd ratio for the treatment effect

\section*{Results - functional form}
\begin{tabular}{llll}
\hline Scenario II & \multicolumn{3}{c}{ Non linear effect of covariate } \\
\hline OR \(_{T}\) & 0.4 & 0.4 & 0.4 \\
OR Age & 0.8 & 2.7 & 7.4 \\
ATE & 0.338 & 0.338 & 0.338 \\
& & & \\
Cox & \(0.001(0.01)\) & \(0(0.01)\) & \(0(0.01)\) \\
Cox strata & \(0.001(0.011)\) & \(-0.001(0.011)\) & \(-0.001(0.011)\) \\
Random Forest & \(-0.003(0.011)\) & \(-0.004(0.012)\) & \(-0.004(0.012)\)
\end{tabular}

Table: last three rows:
bias (root mean square error) of the ATE estimated by the models \(O R_{T}\) odd ratio for the treatment effect \(O R_{\text {Age }}\) odd ratio for the non linear effect of the risk factor (increased risk after 50 years)

\section*{Results - interaction}
\begin{tabular}{llll}
\hline Scenario III & \multicolumn{3}{l}{ Interaction between treatment and covariate } \\
\hline\(O R_{T}\) & 0.4 & 0.4 & 0.4 \\
R \(_{T * \text { gender }}\) & 1.6 & 2.7 & 7.4 \\
ATE & & & \\
& 0.075 & -0.011 & -0.097 \\
Cox & \(-0.01(0.014)\) & \(-0.04(0.041)\) & \(-0.146(0.146)\) \\
Cox strata & \(0.001(0.011)\) & \(0(0.011)\) & \(0.001(0.01)\) \\
Random Forest & \(0.001(0.011)\) & \(0(0.011)\) & \(0(0.01)\)
\end{tabular}

Table: last three rows:
bias (root mean square error) of the ATE estimated by the models \(O R_{T}\) odd ratio for the treatment effect \(O R_{T * \text { gender }}\) odd ratio for interaction between gender and treatment

\section*{Discussion}

Alternative models:
\(\checkmark\) No noticeable increase of the variance of the estimates
\(\checkmark\) For categorical variables, a fully stratified Cox model is robust against:
- non PH
- interaction between variables
\(\checkmark\) For dealing with continuous variables, use random Forests
\(\mathbf{X}\) extra-parameters to be tuned (e.g. number of trees)
\(X\) Increased computation time

\section*{Application}

Objective:
- to compare 3 antiplatelet regimens using the danish registry
- \(\mathrm{n}=19223\) patients
- time horizon: 1 year

Outcome:
- date of first stroke event (\(\mathrm{n}=1610,8.4 \%\))

Competing event:
- death (\(\mathrm{n}=677,3.5 \%\))

Possible confounders:
- many (\(p=10\)) including age, gender, ...

\section*{Checking Proportional hazard assumption}

\footnotetext{
\({ }^{1}\) based on the score process
}

\section*{Checking functional form}

\section*{Variable age}
- additional risk after 75 years
- approx. linear

\section*{Models}

Variables:
- Continuous: age
- Categorical: treatment, gender, year

CSC CSC inter

Two cause specific Cox model CSC
+ interactions between treatment and gender, age, year
+ cubic spline on age
CSC strata stratified CSC on treatment, gender, year

\section*{naive Cox model vs. alternatives}

- violation of PH assumption impacts the estimate of NTT at early times

\section*{Summary}

Cox models can be used to assess :
\(\triangleright\) disease incidence (absolute risk)
\(\triangleright\) average treatment effect

Relies on several assumptions, e.g.:
\(\triangleright\) proportional hazard
\(\triangleright\) linear effect, no interaction between variables

Model checking:
\(\triangleright\) Hope: no unmeasured confounders
\(\triangleright\) usual diagnostic tools are of limited interest for large \(p\) or \(n\)
\(\triangleright\) proposal: assess the impact of Cox model assumptions using alternative models

\section*{Bibliography I}

Christiansen, C. B. et al. (2015). 'Comparison of antiplatelet regimens in secondary stroke prevention: a nationwide cohort study'. In: BMC Neurology 15.1, p. 225. ISSN: 1471-2377. URL: http://www.biomedcentral.com/1471-2377/15/225.

Grambsch, P. M. et al. (1994). 'Proportional hazards tests and diagnostics based on weighted residuals'. In: Biometrika 81.3, pp. 515-526. ISSN: 00063444.

Grøn, R. et al. (2016). 'Misspecified poisson regression models for large-scale registry data: inference for 'large n and small p'.' In: Statistics in medicine 35.7, pp. 1117-29. ISSN: 1097-0258. URL: http://www.ncbi.nlm.nih.gov/pubmed/26423319.

Staerk, L. et al. (2016). 'Ischaemic and haemorrhagic stroke associated with non-vitamin K antagonist oral anticoagulants and warfarin use in patients with atrial fibrillation: a nationwide cohort study'. In: European Heart Journal. URL: http://eurheartj.oxfordjournals.org/content/early/2016/10/12/ eurheartj.ehw496.abstract.```

