Average treatment effect

Checking ATE assumptions

Assessing treatment effect using registry data

Brice Ozenne

Dantrip 28-10-16

Average treatment effect

Checking ATE assumptions

Summary

Motivation

Objective: decide whether a treatment is beneficial \rightarrow for a give time horizon

1 year

 $M_{\rm ATERIAL:}$ registry data

- observational data (i.e. non-randomized)
- Iong term follow-up
- large number of patients

What do we mean by beneficial:

• does the treatment reduce the 1-year risk of developing the disease ?

Average treatment effect

Checking ATE assumptions

Plan

- Estimating a 1-year risk of a disease using registry data
- 2 Estimating a treatment effect using registry data
 - e.g. Staerk et al. 2016:

Stroke/thromboembolism

Average treatment effect

Checking ATE assumptions

Plan

- Isstimating a 1-year risk of a disease using registry data → model checking [Cox]
- ② Estimating a treatment effect using registry data → model checking [new strategy]
 - e.g. Staerk et al. 2016:

Stroke/thromboembolism

Average treatment effect

Checking ATE assumptions

Summary

Absolute risk

Average treatment effect

Checking ATE assumptions

Definition

1-year absolute risk:

- chance that a person will be diagnosed with the event in 1 year
 - \rightarrow depends on the risk of the event λ_{event}
 - \rightarrow depends on the risk of death λ_{death}

Average treatment effect

Checking ATE assumptions

Summary

Definition

1-year absolute risk:

- chance that a person will be diagnosed with the event in 1 year
 - \rightarrow depends on the risk of the event $\lambda_{\textit{event}}$

X: covariates like age, gender ...

Considering registry data, are involved:

- the event of interest
- competing risks, e.g. death
 - \rightarrow will prevent the observation of the event

Average treatment effect

Checking ATE assumptions

Summary

Definition

1-year absolute risk:

- chance that a person will be diagnosed with the event in 1 year
 - \rightarrow depends on the risk of the event $\lambda_{\textit{event}}$
 - \rightarrow depends on the risk of death λ_{death}

X: covariates like age, gender \dots

Considering registry data, are involved:

- the event of interest
- competing risks, e.g. death
 - \rightarrow will prevent the observation of the event

Summar

Average treatment effect

Checking ATE assumptions

Definition

1-year absolute risk:

Absolute risk

- chance that a person will be diagnosed with the event in 1 year
 - \rightarrow depends on the risk of the event $\lambda_{\textit{event}}$
 - ightarrow depends on the risk of death $\lambda_{\textit{death}}$

$$r_{event}(t|X) = \underbrace{\int_{0}^{t}}_{\text{addition over time}} \underbrace{\underbrace{S_{0}(s|X)}}_{\text{survival at to time s immediate risk of the event at time s}}_{immediate risk of the event at time s} ds$$

X: covariates like age, gender . . .

Considering registry data, are involved:

- the event of interest
- competing risks, e.g. death
 - \rightarrow will prevent the observation of the event

Average treatment effect

Checking ATE assumptions

Summary

Cause specific Cox model

One Cox regression for each competing risk:

$$\lambda_{event}(t|X) = \lambda_{0,event}(t) \exp(X\beta_{event})$$
$$\lambda_{death}(t|X) = \lambda_{0,death}(t) \exp(X\beta_{death})$$

We can then estimate the overall survival.

Average treatment effect

Checking ATE assumptions

Summary

Cause specific Cox model

One Cox regression for each competing risk:

$$\lambda_{event}(t|X) = \lambda_{0,event}(t) \exp(X\beta_{event})$$
$$\lambda_{death}(t|X) = \lambda_{0,death}(t) \exp(X\beta_{death})$$

We can then estimate the overall survival.

- no event
- not dead

Average treatment effect

Checking ATE assumptions

Summary

Cause specific Cox model

One Cox regression for each competing risk:

$$\lambda_{event}(t|X) = \lambda_{0,event}(t) \exp(X\beta_{event})$$

 $\lambda_{death}(t|X) = \lambda_{0,death}(t) \exp(X\beta_{death})$

We can then estimate the overall survival.

$$S_0(t|X) = \exp\left(-\int_0^t \lambda_{death}(s|X) + \lambda_{event}(s|X)ds
ight)$$

Average treatment effect

Checking ATE assumptions

Summary

- 1 > library(riskRegression)
- 2 > data(Melanoma)
- 3 > fit1 <- CSC(formula=Hist(time,status)~sex+invasion+age,</pre>
- 4 + data=Melanoma)
- 5 fit1\$models\$`Cause 1`

```
Call:
```

```
survival::coxph(...)
```

	coef	exp(coef)	<pre>se(coef)</pre>	Z	р
sexMale	0.66338	1.94135	0.26632	2.49	0.01274
invasionlevel.1	1.03717	2.82122	0.32824	3.16	0.00158
invasionlevel.2	1.40323	4.06830	0.38074	3.69	0.00023
age	0.00982	1.00987	0.00834	1.18	0.23884

Average treatment effect

Checking ATE assumptions

Summary

Average treatment effect

Checking ATE assumptions

Summary

Summary

We can easily compute the absolute risk

- using one Cox model for the event of interest
- using another Cox model for the competing events

But now we have to check the assumptions for each Cox model !

Average treatment effect

Checking ATE assumptions

Summary

Cox model assumptions

Assumptions:

- proportional hazard (PH) assumption
- 2 (linear) functional form
- (absence of) interaction

Average treatment effect

Checking ATE assumptions

Checking Cox model assumptions

Model checking is more complex compared to a linear regression

- several types of residuals
- many different diagnostic tools
 - validity of the null hypothesis

e.g. PH vs. non PH

- against a specific alternative hypothesis

e.g. quadratic vs. linear effect age

Average treatment effect

Checking ATE assumptions

(1) Checking Proportional hazard assumption Cox model:

$$\lambda(t|X) = \lambda_0(t)e^{eta X}$$

Here we assume $\beta \perp t$

• Visual checking with Kaplan Meier

Average treatment effect

Checking ATE assumptions

Summary

(1) Checking Proportional hazard assumption Cox model:

 $\lambda(t|X) = \lambda_0(t)e^{\beta X}$

Here we assume $\beta \perp t$

- \bullet Statistical test: (\mathcal{H}_0) the PH assumption holds,
 - i.e. the cumulative score process follows a brownian bridge
- > plot(gof:::cumres(coxph))

Average treatment effect

Checking ATE assumptions

(1) Remedies for non proportional hazard Strategy 1: find the problematic variable and the type of time dependency

• Display of the Schoenfeld residuals (Grambsch et al. 1994)

 $\mathbb{E}[r_{ij}] \approx \beta_j(t_i) - \hat{\beta}_j$

13/41

Average treatment effect

Checking ATE assumptions

(1) Remedies for non proportional hazard Strategy 1: find the problematic variable and the type of time dependency

• Use a Cox model with time varying effects

$$\lambda(t|X) = \lambda_0(t)e^{\beta(t)X}$$

z1

> plot(timereg::timecox(Surv(time,status) \sim z,

Summary

13/41

Checking ATE assumptions

(1) Remedies for non proportional hazard

Strategy 1: find the problematic variable and the type of time dependency $% \left({{{\left[{{{\left[{{{c}} \right]}} \right]}_{{\left[{{{c}} \right]}}}}_{{\left[{{{c}} \right]}}}} \right]} \right)$

Strategy 2: stratification Cox model:

$$\lambda(t|X, treatment) = \lambda_0(t)e^{\beta X + \gamma treatment}$$

Stratified Cox model:

$$\lambda(t|X, \textit{treatment}) = \lambda_{0,\textit{treatment}}(t) e^{eta X}$$

Average treatment effect

Checking ATE assumptions

Summary

(2) Checking the functional form

$$\lambda(t|X,T) = \lambda_0 e^{\beta X}$$

Here we assume the log of the risk increase linearly with X, e.g. with age.

Diagnostic tools:

- Display martingale residuals
- Comparison with model including a quadratic term or spline

Average treatment effect

Checking ATE assumptions

Summary

(3) Checking possible interactions

$$\lambda(t|X, T) = \lambda_0 e^{\beta X + \gamma treatment}$$

Here we assume that the risk increase independently with X and with *treatment*

Diagnostic tools:

- Display martingale residuals
- Comparison with a model with interactions

Average treatment effect

Checking ATE assumptions

Summary

Limits

In practice model validation is tedious:

- large number of tests
 - at least 2 per variables + PH
 - (i.e. linearity and interaction with treatment)
 - competing risks: two Cox models to check
- unclear alternative hypothesis
 - residual plot can be hard to interpret
- large *n* small *p*
 - overpowered tests (Grøn et al. 2016)
 - \rightarrow may detect unimportant deviations to hypothesis

Average treatment effect

Checking ATE assumptions

Summary

Average treatment effect

Checking ATE assumptions

Observational vs. randomized study

Randomized experiment

- eliminates confounding
- balances all risk factors: known AND unknown
- \rightarrow causal interpretation

Observational studies

- \bullet can ONLY account for known and measured risk factors
- ightarrow establish associations

Causal inference theory:

causal interpretation (under hypothesis) in observational studies

Average treatment effect

Checking ATE assumptions

Summary

Counterfactual outcomes

\mathcal{H} ypothetical world

Average treatment effect

Checking ATE assumptions

Summary

Counterfactual outcomes

\mathcal{H} ypothetical world

We can measure for individual *i* at time *t*: $Y_i^{T=1}(t)$, outcome using intervention 1 $Y_i^{T=0}(t)$, outcome using intervention 0

We can estimate

$$Y_i^{T=1}(t) - Y_i^{T=0}(t)$$

the individual causal effect at t

Average treatment effect

Checking ATE assumptions

Summary

Counterfactual outcomes

 \mathcal{R} eal world

Average treatment effect

Checking ATE assumptions

Summary

Counterfactual outcomes

 $\mathcal{R}\mathsf{eal} ~\mathsf{world}$

We only can measure : $Y_i^{T=1}(t)$ OR $Y_i^{T=0}(t)$

We can infer the average causal effect:

$$ACE(t) = \mathbb{E} \begin{bmatrix} Y^{T=1}(t) - Y^{T=0}(t) \end{bmatrix}$$

$$= \mathbb{E} \begin{bmatrix} Y^{T=1}(t) \end{bmatrix} - \mathbb{E} \begin{bmatrix} Y^{T=0}(t) \end{bmatrix}$$

e.g. (no confounder) $\widehat{ACE}(t) = \sum_{i=1}^{n_1} Y_i^{T=1}(t) - \sum_{j=1}^{n_2} Y_j^{T=0}(t)$

Average treatment effect

Checking ATE assumptions

Summary

G formula

\mathcal{R} eal world: confounders

Average treatment effect

Checking ATE assumptions

Summary

G formula

 \mathcal{R} eal world: confounders

Statistical model: $\mathbb{E}[Y|X, T]$

$$ACE(t) = \sum_{i=1}^{n} \mathbb{E}[Y_i(t)|X_i, T=1] \\ -\mathbb{E}[Y_i(t)|X_i, T=0]$$

Here Y(t)|X, T is the absolute risk

Average treatment effect

Checking ATE assumptions

Summary

Workflow (Christiansen et al. 2015)

Define the population of interest Patients with first-time ischemic stroke (n=19223) Exclusion criteria: atrial fibrillation ...

- 2 Define the intervention (T
- Oefine the event of interest (Y)
- Identify the possible competing events (D)
- Identify the possible confounders/pronostic variable (X)
- Define a statistical model for relating Y, T, and X

Average treatment effect

Checking ATE assumptions

Summary

Workflow (Christiansen et al. 2015)

Define the population of interest

2 Define the intervention (T)

e.g.: antiplatelet regimens for secondary stroke prevention $T{=}0{:}$ ASA

- T=1: Clopidogrel
- T=2: ASA+Clopidogrel
- I Define the event of interest (Y)
- Identify the possible competing events (D)
- Identify the possible confounders/pronostic variable (X)
- Define a statistical model for relating Y, T, and X

Average treatment effect

Checking ATE assumptions

Summary

Workflow (Christiansen et al. 2015)

- Define the population of interest
- **2** Define the intervention (T)
- **③** Define the event of interest (Y)
 - e.g.: fatal or non fatal ischemic stroke
- Identify the possible competing events (D)
- Identify the possible confounders/pronostic variable (X)
- Define a statistical model for relating Y, T, and X

Average treatment effect

Checking ATE assumptions

Summary

Workflow (Christiansen et al. 2015)

- Define the population of interest
- **2** Define the intervention (T)
- **O** Define the event of interest (Y)
- Identify the possible competing events (D)
 - e.g.: death not related to a stroke event
- Identify the possible confounders/pronostic variable (X)
- Define a statistical model for relating Y, T, and X

Average treatment effect

Checking ATE assumptions

Summary

Workflow (Christiansen et al. 2015)

- Define the population of interest
- **2** Define the intervention (T)
- **O** Define the event of interest (Y)
- Identify the possible competing events (D)
- Identify the possible confounders/pronostic variable (X) e.g. age, hypertension, ...
- Define a statistical model for relating Y, T, and X

Average treatment effect

Checking ATE assumptions

Summary

Workflow (Christiansen et al. 2015)

- Define the population of interest
- **2** Define the intervention (T)
- **O** Define the event of interest (Y)
- Identify the possible competing events (D)
- **(3)** Identify the possible confounders/pronostic variable (X)
- **(**) Define a statistical model for relating Y, T, and X

A two-cause specific Cox model:

$$\lambda^{Y}(t|X,T) = \lambda_{0}^{Y}e^{\beta^{Y}X+\gamma^{Y}T}$$
$$\lambda^{D}(t|X,T) = \lambda_{0}^{D}e^{\beta^{D}X+\gamma^{D}T}$$

Checking ATE assumptions

Computation of the G-formula - in @

Package: riskRegression https://github.com/tagteam/riskRegression Function: ate

Arguments

- object: outcome model which describes how event risk depends on treatment and covariates
- data
- treatment: name of the treatment variable in data
- times: time points at which to evaluate risks
- cause: the cause of interest
- B: the number of bootstrap replications used to compute the confidence interval.

Average treatment effect

Checking ATE assumptions

Summary

G-formula (software)

No competing risks:

1 > head(dtSurv)

		time	${\tt strokeEvent}$	${\tt Treatment}$	Age	
	1:	4.901849	FALSE	ТО	59.78796	
	2:	4.555159	TRUE	ТО	60.66406	
	3:	6.681136	FALSE	T1	58.76296	
1	> m(Cox <- coxp	oh(Surv(time	,strokeEver	nt)~ Treatment + A	Age,
2	+		data = dt	Surv)		
3						
4	> at	te(mCox, da	ata = dtSurv	, treatment	t = "Treatment",	
5	+	times =	12, $B = 1000$))		

Average treatment effect

Checking ATE assumptions

Summary

G-formula (software)

Competing risks:

1 > head(dtCR)

		time	eventtype	eventtypeNum	Treatment	Age	
	1:	2.9	stroke	1	ТО	58.96060	
	2:	9.3	censoring	0	ТО	59.37469	
	3:	2.0	death	2	ТО	59.36296	
1	> 1	nCSC <	<- CSC(
2	+		list(H	Hist(time,even	nttypeNum)	~ Treatment	+ Age,
3	+ Hist(time,eventtypeNum)~ Age),						
4	+ data = dtCR						
5	+))					
6							
7	> a	ate(m(CSC,data =	dtCR, treatme	ent = "Trea	atment",	
8	+	ti	imes = 12 ,	cause = 1, B	= 1000)		

Checking ATE assumptions

G-formula (software output)

Absolute risk of stroke relapse

	Treatment	meanRisk	meanRiskBoot	lower	upper	n.boot
1:	ТО	0.111	0.111	0.101	0.123	1000
2:	T1	0.080	0.080	0.071	0.090	1000
3:	T2	0.078	0.078	0.073	0.082	1000

Difference in absolute risk of stroke between treatments:

1	Freatment.A 7	<pre>Freatment.B</pre>	time	diff	
1:	T1	ТО	12	0.032	
2:	T2	ТО	12	0.034	
3:	T2	T1	12	0.002	
	diffMeanBoot	diff.lower	diff	upper	n.boot
1:	0.032	0.017		0.046	1000
2:	0.033	0.022		0.046	1000
3:	0.002	0.002		0.013	1000

Average treatment effect

Checking ATE assumptions

Summary

Assumptions

no unmeasured confounders

- positivity
- well-defined intervention
- correctly specified model
 - proportional hazard assumption
 - D> (linear) functional form
 - D> (absence of) interaction

Average treatment effect

Checking ATE assumptions

Summary

Assumptions

- no unmeasured confounders
- positivity
- well-defined intervention
- correctly specified model
 - ▷ proportional hazard assumption
 - (linear) functional form
 - D> (absence of) interaction

Average treatment effect

Checking ATE assumptions

Summary

Assumptions

- no unmeasured confounders
- positivity
- well-defined intervention
- correctly specified model
 - proportional hazard assumption
 - (linear) functional form
 - 1> (absence of) interaction

Average treatment effect

Checking ATE assumptions

Assumptions

- no unmeasured confounders
- o positivity
- well-defined intervention
- correctly specified model
 - ▷ proportional hazard assumption
 - ▷ (linear) functional form▷ (absence of) interaction

[Not covered] non-informative censoring, influential observations

 \widehat{ATE} : -0.513[-0.571; -0.441] vs -0.244[-0.281; -0.206]

Average treatment effect

Checking ATE assumptions

Summary

Assumptions

- no unmeasured confounders
- positivity
- well-defined intervention
- correctly specified model
 - ▷ proportional hazard assumption
 - \triangleright (linear) functional form
 - ▷ (absence of) interaction

[Not covered] non-informative censoring, influential observations

 \widehat{ATE} : -0.164[-0.221; -0.107] vs -0.200[-0.264; -0.132]

Average treatment effect

Checking ATE assumptions

Summary

Assumptions

- no unmeasured confounders
- positivity
- well-defined intervention
- correctly specified model
 - ▷ proportional hazard assumption
 - ▷ (linear) functional form
 - ▷ (absence of) interaction

Average treatment effect

Checking ATE assumptions

Summary

Assumptions

- no unmeasured confounders
- positivity
- well-defined intervention
- correctly specified model
 - ▷ proportional hazard assumption
 - ▷ (linear) functional form
 - \triangleright (absence of) interaction

Average treatment effect

Checking ATE assumptions

Summary

Proposed approach

• Compare alternative modelling strategies to the Cox model \rightarrow check result sensitivity to model assumptions

Alternative models:

- increased flexibility:
 - \rightarrow less biased
- ✗ increased complexity:
 - \rightarrow harder to interpret
 - \rightarrow increased variance of the estimates

Average treatment effect

Checking ATE assumptions

Summary

Extensions/alternatives to Cox model

• relax PH assumption:

- -Cox strata stratified Cox model
- -Others Cox model with time varying effects logistic risk regression
- include non-linear relationships/interactions
 -Cox spline regression spline in Cox model
 -RF random survival Forest

Average treatment effect

Checking ATE assumptions

Summary

Simulation study

Investigate the bias/variance trade-off

Three scenari:

(I) violation of proportional hazard assumption

(II) mispecification of the functional form of a risk factor

(III) missing interaction with the treatment variable

Average treatment effect

Checking ATE assumptions

Results - proportional hazard

Scenario I	Non proportional effect of treatment			
$OR_T(t \leq 5)$	0.8	1.7	7.4	
$OR_T(t \ge 5)$	0.4	0.4	0.4	
ATE	0.181	-0.002	-0.068	
Cox	-0.049 (0.05)	-0.082 (0.083)	-0.062 (0.062)	
Cox strata	0.001 (0.011)	0 (0.01)	-0.01 (0.013)	
Random Forest	0.001 (0.01)	0 (0.009)	0.005 (0.007)	

Table: last three rows:

bias (root mean square error) of the ATE estimated by the models OR_T odd ratio for the treatment effect

Average treatment effect

Checking ATE assumptions

Summary

Results - functional form

Scenario II	Non linear effect of covariate			
OR _T	0.4	0.4	0.4	
OR _{Age}	0.8	2.7	7.4	
ATE	0.338	0.338	0.338	
Cox Cox strata Random Forest	0.001 (0.01) 0.001 (0.011) -0.003 (0.011)	0 (0.01) -0.001 (0.011) -0.004 (0.012)	0 (0.01) -0.001 (0.011) -0.004 (0.012)	

Table: last three rows:

bias (root mean square error) of the ATE estimated by the models OR_T odd ratio for the treatment effect OR_{Age} odd ratio for the non linear effect of the risk factor (increased risk after 50 years)

Average treatment effect

Checking ATE assumptions

Summary

Results - interaction

Scenario III	Interaction between treatment and covariate			
ORT	0.4	0.4	0.4	
$OR_{T*gender}$	1.6	2.7	7.4	
ATE	0.075	-0.011	-0.097	
Cox Cox strata Random Forest	-0.01 (0.014) 0.001 (0.011) 0.001 (0.011)	-0.04 (0.041) 0 (0.011) 0 (0.011)	-0.146 (0.146) 0.001 (0.01) 0 (0.01)	

Table: last three rows:

bias (root mean square error) of the ATE estimated by the models OR_T odd ratio for the treatment effect $OR_{T*render}$ odd ratio for interaction between gender and treatment

Average treatment effect

Checking ATE assumptions ○○○○○○● ○○○○○ Summary

Discussion

Alternative models:

- No noticeable increase of the variance of the estimates
- For categorical variables, a fully stratified Cox model is robust against:
 - non PH
 - interaction between variables
- For dealing with continuous variables, use random Forests
 - 🗶 extra-parameters to be tuned (e.g. number of trees)
- ✗ Increased computation time

Average treatment effect

Checking ATE assumptions

Application

Objective:

- to compare 3 antiplatelet regimens using the danish registry
- n = 19223 patients
- time horizon: 1 year

Outcome:

• date of first stroke event (n=1610, 8.4%)

Competing event:

• death (n=677, 3.5%)

Possible confounders:

• many (p=10) including age, gender, ...

Average treatment effect

Checking ATE assumptions

Summary

Checking Proportional hazard assumption

¹based on the score process

Average treatment effect

Checking ATE assumptions

Summary

Checking functional form

Variable age

- additional risk after 75 years
- approx. linear

Average treatment effect

Checking ATE assumptions

Summary

Models

Variables:

- Continuous: age
- Categorical: treatment, gender, year

CSC Two cause specific Cox model

CSC inter CSC

- + interactions between treatment and gender, age, year $% \left({{\left({{{\left({{{\left({1 \right)}} \right)}} \right)}_{\rm{c}}}}_{\rm{c}}} \right)} \right)$
- + cubic spline on age
- CSC strata stratified CSC on treatment, gender, year

Average treatment effect

Checking ATE assumptions

Summary

naive Cox model vs. alternatives

 violation of PH assumption impacts the estimate of NTT at early times

Average treatment effect

Checking ATE assumptions

Summary

Summary

Cox models can be used to assess :

- ▷ disease incidence (absolute risk)
- ▷ average treatment effect

Relies on several assumptions, e.g.:

- ▷ proportional hazard
- ▷ linear effect, no interaction between variables

Model checking:

- ▷ Hope: no unmeasured confounders
- \triangleright usual diagnostic tools are of limited interest for large p or n
- *proposal*: assess the impact of Cox model assumptions using alternative models

Average treatment effect

Checking ATE assumptions

Summary

Bibliography I

Christiansen, C. B. et al. (2015). 'Comparison of antiplatelet regimens in secondary stroke prevention: a nationwide cohort study'. In: *BMC Neurology* 15.1, p. 225. ISSN: 1471-2377. URL: http://www.biomedcentral.com/1471-2377/15/225.

Grøn, R. et al. (2016). 'Misspecified poisson regression models for large-scale registry data: inference for 'large n and small p'.' In: *Statistics in medicine* 35.7, pp. 1117-29. ISSN: 1097-0258. URL: http://www.ncbi.nlm.nih.gov/pubmed/26423319.

Staerk, L. et al. (2016). 'Ischaemic and haemorrhagic stroke associated with non-vitamin K antagonist oral anticoagulants and warfarin use in patients with atrial fibrillation: a nationwide cohort study'. In: European Heart Journal. URL: http://eurheartj.oxfordjournals.org/content/early/2016/10/12/ eurheartj.ehw496.abstract.