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Introduction DAGs DAGs in lava

Setting

In a medical studies, we often want to relate:
• an outcome Y e.g. fMRI
• to an exposure variable E e.g. SAD, season

We also know/suspect that other variables X (called covariates)
may be related to Y or E or both. e.g. age, scanner type

What should we do with the covariates?

• nothing
• stratification
• interaction
• . . .
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Why including covariates in the analysis?

To avoid confounding bias:
• e.g. males got treatment A and females treatment B

To get more insight on the mechanisms of the outcome:
• genetic factors may explain failure/sucess of a treatment

To have more precise estimates/increase the power of the test:
• the PET signal varies across age groups
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Why NOT including covariates in the analysis?

It makes the statistical analysis more complex:
• the interpretation of the result is more difficult
• less "objective": several types of analysis are possible

It can hurt the statistical analysis:
• when including useless covariates: loss of precision/power
• when including un-appropriate covariates: bias

Parsimony principle
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Including covariates, how to decide?
• solution 1:

intuition

• solution 2:

causal inference & directed acyclic graphs

• solution 3:

ask Santa
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DAGs
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Directed acyclic graphs (DAGs)

Graphical representation:

• of the variables that are being studied

• and their (causal) relationship

• in an ideal world where we could measure everything
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Example of DAG with seven variables

BMI

Blood pressure

Hair color

Chocolate

Cacao intake

Blood pressure

Stroke

Age

8 / 25



Introduction DAGs DAGs in lava

Example of DAG with seven variables

BMI

Blood pressure

Hair color

Chocolate

Cacao intake

Blood pressure

Stroke

Age

8 / 25



Introduction DAGs DAGs in lava

Causal DAGs

A causal DAG satisfies:

• lack of an arrow =⇒ absence of direct causal effect

• any variable is a cause of its descendents

• all common causes (even unmeasured) are on the graph
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Covariates as a structure in a DAG

BMI

Blood pressure

Hair color

Chocolate

Cacao intake

Blood pressure

Stroke

Age
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Covariates as a structure in a DAG

risk factor

Outcome

unrelated variable

Exposure

Mediator

Collider

Confounder
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Including covariates, how to decide?

• unrelated variable: do not adjust (would decrease precision)

• risk factor: adjust (will increase precision)

• confounder: adjust (will reduce bias)

• mediator: it depends in what we are interested in
(direct or total effect)

• collider: do not adjust (would increase bias)
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A more general criteria (bias)

d-separation:

Two nodes Y and E are d-separated conditional on the node(s) X
if every path between Y and E is blocked.

A path can be block if:
• it is a "colliding" path and does not intersect X
• it is not a "colliding" path and X it intersect X
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Example - d-separation

BMI

Blood pressure

Hair color

Chocolate Blood pressure

Stroke

Age

Mediator

H0
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Example - d-separation

BMIHair color

Chocolate
(E)

Blood pressure
(Y)

Stroke
(X1)

Age
(X2)

path 1

path 2

So we should adjust on Age and not on Stroke
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Applications: Random assignment

Remove the link with the parents of a node.
• no confounding possible
• unbiased if we don’t condition on any variables
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BMI

Blood pressure

Hair color
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Remove the link with the parents of a node.
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Applications: Selection bias
Study: relationship between coffee (E ) and depression (Y )

• recrutement: volonteers

Fictitious world:
• being a researcher makes you drink more coffee an be more

curious compared to other job (not the other way around)

• no relationship being researcher and depression

• your relatives influence your likelihood to be depressed and
your interest in depression

• no relationship being coffee and depression

• main reasons for joining the study are curiosity and interested
in depression
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Applications: Selection bias

Curiosity

Job

Coffee
Inclusion in
the study

Family history Depression

Awarness of
the disease
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Summary: Christmas gift for your statistician

Offer him the DAG corresponding to your study:
• easy to draw: only potatoes and arrows, no math!
• use your expert knowledge to decide nodes/arrows

Limitations of DAGs:
• not well suited for displaying interactions
• difficult to do by hand when the number of variables is large
• require prior knowledge
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DAGs in practice (pessimistic view?)

BMI

Blood pressure

Hair color

Chocolate

Cacao intake

Blood pressure

Stroke

Age

?
?

? ?

?

? ?

???
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DAGs and latent variable
models
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LVM as a DAGs
library(lava)
m <- lvm(c(Y1,Y2,Y3)∼ eta, Y1 ∼ X1, eta ∼ E)
latent(m) <- ∼eta
plot(m, plot.engine = "igraph")

Y1 Y2 Y3

eta

X1 E
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Latent variable models

Latent variable models can be describe using path diagrams
• similar to DAGs, but can include covariance links

Can help you to decide on the presence/absence of an arrow
• but not on its direction
• and only if you enough power for the corresponding test

i.e. don’t expect to identify the graph with n=10
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Data-driven definition of the graph

Functions modelsearch in lava under assumptions:
• linearity of the association
• Gaussian distribution

Testing several arrows requires ajustment for multiple
comparisions:

• function modelsearch2 in lava
• paper ready for submission!
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(in short) Results: setting

?

?

?
?
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(in short) Results: type 1 error

No adjustment Adjustment: Bonferroni Adjustment: Dunnett
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(in short) Results: power
Adjustment: Bonferroni Adjustment: Dunnett difference
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