Refinements 0 A graphical approach

References 00

A refresher on multiple comparisons (or how to spend your α level at Christmas time)

Brice Ozenne

December 6, 2019, NRU Christmas Symposium

References 00

Let's start with an example (Ebert et al., 2019)

Aim: investigate the impact of a disease on some brain signal

	group	id	thalamus	pallidostriatum	neocortex	midbrain
1:	concussion	125BB	2.808	3.117	2.239	3.643
2:	concussion	132MH	4.292	3.893	3.158	5.050
3:	concussion	133AG	9.566	7.435	5.723	9.131
4:	healthy	59HT	9.605	8.066	6.852	10.346
5:	healthy	67MF	8.543	6.742	5.419	7.944
6:	healthy	71BS	5.556	4.613	4.600	7.936

References 00

References 00

- 1. Avoid:
 - Focus one brain region, e.g. based on existing knowledge.

region	concussion effect (%)	p-value
cingulateGyrus	17.28	0.034

- 1. Avoid:
 - Focus one brain region, e.g. based on existing knowledge. \rightarrow may lead to an unacceptable loss of power

region	concussion effect (%)	p-value
cingulateGyrus	17.28	0.034

region	concussion effect (%)	p-value
thalamus	12.75	0.23

References 00

Strategy for handling multiple comparisons

- 1. Avoid:
 - Make a global test, i.e., absence of disease effect in all brain regions.

p-value = 0.011

References 00

Strategy for handling multiple comparisons

- 1. Avoid:
 - Make a global test, i.e., absence of disease effect in all brain regions.

 \rightarrow loose interpretability

p-value = 0.011

References 00

- 1. Avoid:
 - Assume the same effect in all brain regions and test it.

region	concussion effect (%)	p-value	adjusted p-value
All	10.4	0.1975	

- 1. Avoid:
 - Assume the same effect in all brain regions and test it.
 - ightarrow makes (strong but testable) assumptions

region	concussion effect (%)	p-value	adjusted p-value
All	10.4	0.1975	
thalamus	12.75		
pallidostriatum	12.03		
neocortex	4.38		
midbrain	10.4		
pons	1.56		
cingulateGyrus	17.28		

- 1. Avoid:
- 2. Cope with:
 - standard adjustment for multiple comparisons (Bonferroni)

region	concussion effect (%)	p-value	adjusted p-value
thalamus	12.75	0.23	1
pallidostriatum	12.03	0.177	1
neocortex	4.38	0.601	1
midbrain	10.4	0.219	1
pons	1.56	0.858	1
cingulateGyrus	17.28	0.034	0.304

- 1. Avoid:
- 2. Cope with:
 - standard adjustment for multiple comparisons (Bonferroni)
 → may lead to an unacceptable loss of power

region	concussion effect (%)	p-value	adjusted p-value
thalamus	12.75	0.23	1
pallidostriatum	12.03	0.177	1
neocortex	4.38	0.601	1
midbrain	10.4	0.219	1
pons	1.56	0.858	1
cingulateGyrus	17.28	0.034	0.304

- 1. Avoid:
- 2. Cope with:
 - Use "modern" approaches for multiple comparisons

region	concussion effect (%)	p-value	adjusted p-value
thalamus	12.75	0.23	0.395
pallidostriatum	12.03	0.177	0.358
neocortex	4.38	0.601	0.753
midbrain	10.4	0.219	0.395
pons	1.56	0.858	0.858
cingulateGyrus	17.28	0.034	0.096

- 1. Avoid:
- 2. Cope with:
 - Use "modern" approaches for multiple comparisons
 → more work! And choices need to be made ...

region	concussion effect (%)	p-value	adjusted p-value
thalamus	12.75	0.23	0.395
pallidostriatum	12.03	0.177	0.358
neocortex	4.38	0.601	0.753
midbrain	10.4	0.219	0.395
pons	1.56	0.858	0.858
cingulateGyrus	17.28	0.034	0.096

General considerations	Refinements	A graphical approach
00 0000	0	000000

Interpretation: p-value vs. adjusted p-value?

region	concussion effect (%)	p-value	adjusted p-value
 cingulateGyrus	17.28	0.034	0.096

General	considerations
00	
00000	

R	e	f	ìı	n	e	r	n	e	n	t	s

References 00

Interlude

Definition

- given a random variable X,
 e.g. estimator of the concussion effect
- and a null hypothesis H_0 , e.g. $\mathbb{E}[X] = 0$, no concussion effect

The p-value is:

 the probability to observe a realisation of X at least as large as what we observed under H₀, e.g. P[|X| > 17.28|H₀].

P-value are relative to a fixed null hypothesis, i.e. defined independently of the observations

Interpretation: p-value vs. adjusted p-value?

So why did you picked cingulateGyrus:

- prior knowledge \rightarrow p-value
- looked at the p-values \rightarrow an adjustment is necessary!

region	concussion effect (%)	p-value	adjusted p-value
 cingulateGyrus	17.28	0.034	0.096

References 00

Handling cherry picking

Statisticians have no problem with cherry picking ... as soon as it is correctly accounted for!

Cherry picking redefines the null hypothesis:

• i.e., denoting by $T_{.}$ the test statistics, $\mathbb{P}\left[\max\left(|T_{\text{thalamus}}|, |T_{\text{pallidostriatum}}|, \ldots\right) > 2.18|H_0^{\text{max}}\right] = 0.096.$

Called a max-test procedure.

General	considerations
00	
00000	

Refinement 0 A graphical approach

References 00

Impact of the cherry picking on the distribution of the test statistic

General	considerations
00	
00000	

Refinement 0 A graphical approach

References 00

Impact of the cherry picking on the distribution of the test statistic

References 00

Modern multiplicity adjustment methods

How can we improve¹ the Bonferroni adjustment?

- account for the correlation between the test statistics, if we do twice the same test, only correct for one
- account for logical restrictions, when testing $\mu_1 = \mu_2 = \mu_3$, if $\mu_1 \neq \mu_3$ and $\mu_2 \neq \mu_3$ then $\mu_1 \neq \mu_2$.
- account for the ordering between the hypothesis graphical approach proposed by Bretz et al. (2009)

¹ Higher power while controling the FWER, Alosh et al. (2014)

 General considerations
 Refinements
 A graphical approach

 00
 0
 00000

 000000
 0
 0

Step 1: write down null hypotheses

Refinements

A graphical approach

References 00

Step 2: Spread the α level $(\alpha_1 + \alpha_2 + \alpha_{11} + \alpha_{21} = 0.05)$

Refinements

*H*_{thalamus}

A graphical approach

H_{neocortex}

References 00

Refinements

A graphical approach

References 00

Step 3: Define the α propagation

Refinements

A graphical approach 000000

References 00

Step 3: A more powerful α propagation

 General considerations
 Refinements
 A graphical approach

 00
 0
 0000●0

 000000
 0
 0

Step 4: Add the (uncorrected) p-values

efinements

A graphical approach

References 00

efinements

A graphical approach

References 00

efinements

A graphical approach

References 00

lefinements

A graphical approach

References 00

Many other possible options

Refinements

A graphical approach

References 00

Many other possible options

General	considerations
00	
00000	

Alosh, M., Bretz, F., and Huque, M. (2014). Advanced multiplicity adjustment methods in clinical trials. *Statistics in medicine*, 33(4):693–713.

Bretz, F., Maurer, W., Brannath, W., and Posch, M. (2009). A graphical approach to sequentially rejective multiple test procedures. *Statistics in medicine*, 28(4):586–604.

Ebert, S. E., Jensen, P., Ozenne, B., Armand, S., Svarer, C., Stenbaek, D. S., Moeller, K., Dyssegaard, A., Thomsen, G., Steinmetz, J., et al. (2019). Molecular imaging of neuroinflammation in patients after mild traumatic brain injury: a longitudinal 123i-clinde single photon emission computed tomography study. *European journal of neurology*.

Refinements

A graphical approach

References

Conditions

Let $\alpha = (\alpha_1, ..., \alpha_m)$ denote the local significance levels, such that $\sum_{i=1}^m \alpha_i \leq \alpha$. Let $\mathbf{G} = (g_{ij})$ denote an $m \times m$ transition matrix with freely chosen entries g_{ij} that are subject to the regularity conditions

$$0 \leqslant g_{ij} \leqslant 1, \quad g_{ii} = 0 \text{ and } \sum_{k=1}^{m} g_{ik} \leqslant 1 \quad \text{for all } i, j = 1, \dots, m$$

$$\tag{1}$$

The weight g_{ij} determines the fraction of the local level α_i that is allocated to H_j in case H_i was rejected

and the transition matrix G thus fully determines the directed edges.

Refinements

A graphical approach

References

Algorithm

Based on the observed *p*-values $p_i \ i \in M = \{1, ..., m\}$, we define a sequentially rejective test procedure through the following algorithm:

Algorithm 1

- 0. Set I = M.
- 1. Let $j = \arg \min_{i \in I} p_i / \alpha_i$
- 2. If $p_j \leq \alpha_j$, reject H_j ; otherwise stop.
- 3. Update the graph:

$$\begin{split} I \to I \setminus \{j\} \\ \alpha_{\ell} \to \begin{cases} \alpha_{\ell} + \alpha_{j} g_{j\ell}, & \ell \in I \\ 0 & \text{otherwise} \end{cases} \\ g_{\ell k} \to \begin{cases} \frac{g_{\ell k} + g_{\ell j} g_{jk}}{1 - g_{\ell j} g_{j\ell}}, & \ell, k \in I, \ \ell \neq k \\ 0 & \text{otherwise} \end{cases} \end{split}$$

4. If $|I| \ge 1$, go to step 1; otherwise stop.

In the Appendix we show that a graph $\mathscr{G} = (\alpha, \mathbf{G})$ together with the updating rules from Algorithm 1 defines a short cut for a consonant closed test procedure where each intersection hypothesis is tested with a weighted Bonferroni test. Together with Algorithm 1, a graph $\mathscr{G} = (\alpha, \mathbf{G})$ thus defines a sequentially rejective multiple test procedure that strongly controls the FWER at level α , where α and \mathbf{G} are subject to the constraints above.