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The data-processing multiverse

Neuroimaging is used to study brain structure and function
® indirect way of measuring brain signals
® contaminated by multiple sources of noise

Data preprocessing is critical to decontaminate the signal
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A\ many possibilities!

impacts the conclusion of the study
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Need for a statistical framework:

® aggregate evidence from analyses based on different pipelines
— conclusions robust to the choice of pipeline!
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A forest plot!

Superior Frontal Cortex
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A common estimate?
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A common estimate?
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Wpool-se - - - inversely proportional to the uncertainty
VeLs ...of independent combinations of estimates

4/11



Introduction Sensitivity analysis Conclusion

(e]e} 0e00 (e}
(e]e] [e]

Example (scenario 3)
Pipelines:
® 15 very correlated with moderate uncertainty
(p=0.95, 02 =2.5)
® 5 independent with low to high uncertainty
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& .. .but how do we estimate the correlation?

® we only have one estimate per pipeline
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Semiparametric
Theory and

Missing Data
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The Geometry of Influence Functions
As we will describe shonly, most i for the
8, in cither ic models, are linear

and can be uniquely chﬂrs,cmnzcd Dy the influence function of the estimator.
The class of influence functions for such estimators belongs to the Hilbert
space of all mean-zero g-dimensional random functions with finite variance
that was defined in Chapter 2. As such, this construction will allow us to view
estimators or, more specifically, the influence function of estimators, from a
geometric point of view. This will give us intuitive insight into the construction
of such estimators and a geometric way of assessing the relative efficiencies of
the various estimators.

As always, consider the statistical model where Zy,...,Z, are iid ran-
dom vectors and the density of a single Z is assumed to belong to the class
{pz(2:0),0 ¢ Q} with respect to some dominating measure vz. The parameter
# can be written as (87,77)7, where #7%! is the parameter of interest and
7, the nuisance parameter, may be finite- or infinite-dimensional. The truth
will be denoted by 6y = (87 ,51)T. For the remainder of this chapter, we will
only consider parametric models where 6 = (47,77)7 and the vector 6 is
p-dimensional, the parameter of interest /3 is g-dimensional, and the nuisance
parameter  is r-dimensional, with p = ¢ + 7.

An estimator 3, of 3 is a ¢-dimensional measurable random function of
2y, Zn. Most for /3 are i linear; that
is, there exists a random vector (i, a g-dimensional measurable random
function) 7*1(Z), such that E{p(Z)} = 09°1,

"
w2 (B = Bo) = 0"V Y o(Zi) + 0p(1), (3.1)
=
where 0,(1) is a term that converges in probability to zero as n goes to infinity
and E(pp") is finite and nonsingular.
Remark 1. The function @(Z) is defined with respect to the true distribu-
tion p(z,09) that generates the data. Consequently, we sometimes may write

Conclusion
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We now have n "estimates" per pipeline!
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Simulation results

® No bias
® Uncertainty (lower is better)
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pool (constrained gls) =

pool (gls) L

pipeline 8 (uncorrelated)

pipeline 7 (uncorrelated) =

Sensitivity analysis
0000
oce

Real data results

Superior Frontal Cortex

pipeline 6
pipeline 5 (uncorrelated) =
pipeline 4 (correlated) =
pipeline 3 (correlated) =
pipeline 2 (correlated) =

pipeline 1 (correlated) =

Conclusion
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Wrap-up

A statistical framework for "sensitivity analysis" for neuroimaging
¢ visualize heterogeneity across pipelines

e estimate a global effect across pipelines

e quantify proportion of pipelines with evidence for an effect
¢ test hypotheses across pipelines

On-going project
® working paper & software
(“R package LMMstar)

Future

® handling "biased" pipelines
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