Binary-binary interaction 000000 Binary-continous interaction 00000

Statistics refresher: interactions

Brice Ozenne (brice.ozenne@nru.dk)

¹ Neurobiology Research Unit, University Hospital of Copenhagen, Rigshospitalet.

² Section of Biostatistics, Department of Public Health, University of Copenhagen.

January 29th, 2024 - IPSY meeting

Why interactions?

Studying the effect of more than one exposure on an outcome

- e.g. how X_1 and X_2 affect the mean outcome Y $\mathbb{E}[Y] = f(X_1, X_2)$

Exposures may not act independently!

Introduction

- necessity: oxygen and fuel and heat are necessary to ignite fire
- reinforcement or inhibition: combining exposures lead to additional mechanisms enhancing or diminuishing the effect
 - smoking and drinking on the risk of cancer (next slide)
 - chocolate [0.5mm] chips [0.5mm] but chips with chocolate [0.5mm]

Binary-binary interaction

Binary-continous interaction

Continuous-continous interaction

Conclusior 0

Real life example (Blot WJ, 1988)

Smoking and drinking lead to high risk of pharyngeal cancer

• more than the addition of the (separate) effect of smoking and drinking.

Binary-continous interaction 00000

Conclusior 0

Example of no interaction model

Without interaction we fit (linear) models such as:

$$\mathbb{E}[Y] = \alpha + \beta_1 X_1 + \beta_2 X_2$$

Example dataset¹:

df <- subset(vitaminD,country %in% c("Denmark","Finland"))
e.lm <- lm(log10(vitd) ~ country + bmi, data = df)
summary(e.lm)</pre>

Estimate Std. Error t value Pr(>|t|) (Intercept) 1.282737 0.100673 12.742 <2e-16 *** countryFinland 0.032126 0.037434 0.858 0.3920 bmi 0.009672 0.003860 2.506 0.0132 *

1 http://staff.pubhealth.ku.dk/~linearpredictors/datafiles/ VitaminD.csv

Binary-continous interaction

Conclusior 0

What is easy without interactions? (1/3)

Estimate Std. Error t value Pr(>|t|)(Intercept)1.2827370.10067312.742<2e-16 ***</td>countryFinland0.0321260.0374340.8580.3920bmi0.0096720.0038602.5060.0132 *

1. bmi: is the bmi effect,

i.e. the typical difference in log10 of the vitamin D level between two person from the same country but with a bmi differing by 1.

$$\beta_2 = \mathbb{E}\left[Y|X_1 = x_1 + 1, X_2 = x_2\right] - \mathbb{E}\left[Y|X_1 = x_1, X_2 = x_2\right]$$
$$\hat{\beta}_2 \approx 0.001352$$

similarly for the country effect

Binary-continous interaction

Conclusion O

What is easy without interactions? (2/3)

	Estimate S	Std. Error t	value P	r(> t)	
(Intercept)	1.282737	0.100673	12.742	<2e-16	***
countryFinland	0.032126	0.037434	0.858	0.3920	
bmi	0.009672	0.003860	2.506	0.0132	*

1. bmi: is the bmi effect

2. bmi: p-value is (very) similar to a likelihood ratio test

e.lm0 <- lm(log10(vitd) \sim country, data = df) anova(e.lm, e.lm0)

Res.Df RSS Df Sum of Sq F Pr(>F) 1 162 9.3237 2 163 9.6852 -1 -0.36148 6.2807 0.01319 *

What is easy without interactions? (3/3)

Estimate Std. Error t value Pr(>|t|)(Intercept)1.2827370.10067312.742<2e-16 ***</td>countryFinland0.0321260.0374340.8580.3920bmi0.0096720.0038602.5060.0132 *

1. bmi: is the bmi effect

Introduction

- 2. bmi: p-value is (very) similar to a likelihood ratio test
- Estimate/p-value are unaffected by centering continuous covariates

(except the intercept)

summary(lm(log10(vitd) \sim country + I(bmi-25), data = df))							
Estimate Std. Error t value Pr(> t)							
(Intercept)	1.524548	0.027168	56.117	<2e-16 ***			
countryFinland	0.032126	0.037434	0.858	0.3920			
I(bmi - 25)	0.009672	0.003860	2.506	0.0132 *			

What is difficult with interactions? (1/4)

e.lmI <- lm(log10(vitd) \sim country * bmi, data = df) summary(e.lmI)

	Estimate S	td. Error t	value F	Pr(> t)	
(Intercept)	1.313965	0.148551	8.845	1.55e-15	***
countryFinland	-0.024308	0.200474	-0.121	0.904	
bmi	0.008429	0.005814	1.450	0.149	
<pre>countryFinland:bmi</pre>	0.002233	0.007792	0.287	0.775	

- 1. The significance levels **look** different between considering or not interactions
 - different statistical hypotheses are considered
 - more complex model can have lower (more parameters to estimate) or higher power (less residual noise), depending on the data.

Introduction 00 000000000	Binary-binary interaction	Binary-continous ir 00000	nteraction Cor	ntinuous-continou	is interaction	Conclusion O	
What is difficult with interactions? $(2/4)$							
Estimate Std. Error t value Pr(> t)							
(Inte	ercept)	1.313965	0.148551	8.845	1.55e-15	***	
count	ryFinland	-0.024308	0.200474	-0.121	0.904		

bmi0.0084290.0058141.4500.149countryFinland:bmi0.0022330.0077920.2870.775

- The significance levels **look** different between considering or not interactions
- 2. The p-value of bmi does **not** assess the evidence for a bmi effect on the outcome
 - only the effect for a specific country (here Denmark)
 - a LRT vs. a model without bmi does

anova(e.lmI, e.lmO)

Res	.Df	RSS Df	Sum	of	Sq	F	Pr(>F)	
1	161	9.3190						
2	163	9.6852 -	2 -(0.36	623	3.1636	0.04491	*

Introduction	Binary-binary interaction	Binary-continous i 00000	nteraction Con	tinuous-continous i	nteraction	Conclusion O
	What is di	fficult with	interact	ions? (3	/4)	
		Estimate St	d. Error t	t value Pr	(> t)	
(Int	ercept)	1.313965	0.148551	8.845 1	.55e-15	***
coun	tryFinland	-0.024308	0.200474	-0.121	0.904	
bmi		0.008429	0.005814	1.450	0.149	

countryFinland:bmi 0.002233 0.007792 0.287 0.775

- The significance levels **look** different between considering or not interactions
- The p-value of bmi does **not** assess the evidence for a bmi effect on the outcome
- 3. Estimate/p-value are affected by centering continuous covariates (except the interaction)

summary(lm(log10(vitd) \sim country * I(bmi-25), data = df))								
Estimate Std. Error t value Pr(> t)								
(Intercept)		1.524693	0.027250	55.953	<2e-16			
countryFinland		0.031513	0.037601	0.838	0.403			
I(bmi - 25)		0.008429	0.005814	1.450	0.149			
countryFinland.I(bmi -	25)	0 002233	0 007792	0 287	0 ^{107/245}			

Introduction	
00	
00000000	

Binary-continous interaction

Conclusion O

What is difficult with interactions? (4/4)

	Estimate St	d. Error t	value F	Pr(> t)	
(Intercept)	1.313965	0.148551	8.845	1.55e-15	***
countryFinland	-0.024308	0.200474	-0.121	0.904	
bmi	0.008429	0.005814	1.450	0.149	
<pre>countryFinland:bmi</pre>	0.002233	0.007792	0.287	0.775	

- 1. The significance levels **look** different between considering or not interactions
- 2. The p-value of bmi does **not** assess the evidence for a bmi effect on the outcome
- Estimate/p-value are affected by centering covariates (except the interaction)
- 4. One has to report several estimates for a given exposure:
 - BMI effect in Denmark: 0.008429
 - BMI effect in Finland: 0.008429+0.002233=0.010662

Binary-continous interaction

Conclusion O

General advise

Make a graphical representation of the data and the model fit

- to retrieve what each regression coefficient means
- possibly in a simplified model, i.e., without covariates

Binary-binary interaction

Binary-continous interaction 00000

Continuous-continous interactio

Conclusior 0

Interaction between binary variables

Binary-binary interaction

Binary-continous interaction

Continuous-continous interactio

Conclusior

Illustrative datasets

Binary-binary interaction

Binary-continous interaction 00000 Conclusion O

Estimated regression coefficients

Binary-binary interaction

Binary-continous interaction 00000 Conclusior O

$$\mathbb{E}[Y] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2 \\ = \begin{cases} \alpha & \text{when } X_1 = X_2 = 0 \\ \alpha + \beta_2 & \text{when } X_1 = 0, X_2 = 1 \\ \alpha + \beta_1 & \text{when } X_1 = 1, X_2 = 0 \\ \alpha + \beta_1 + \beta_2 + \gamma & \text{when } X_1 = X_2 = 1 \end{cases}$$

Binary-binary interaction

Binary-continous interaction

Conclusior 0

$$\mathbb{E}[Y] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$$

=
$$\begin{cases} \alpha & \text{when } X_1 = X_2 = 0\\ \alpha + \beta_2 & \text{when } X_1 = 0, X_2 = 1\\ \alpha + \beta_1 & \text{when } X_1 = 1, X_2 = 0\\ \alpha + \beta_1 + \beta_2 + \gamma & \text{when } X_1 = X_2 = 1 \end{cases}$$

$$\mathbb{E} [Y|X_1 = 0, = X_2 = 0] = 0.46$$

$$\mathbb{E} [Y|X_1 = 0, = X_2 = 1] = 0.46 + 0.84 = 1.3$$

$$\mathbb{E} [Y|X_1 = 1, = X_2 = 0] = 0.46 + 1.01 = 1.47$$

$$\mathbb{E} [Y|X_1 = 1, = X_2 = 1] = 0.46 + 0.84 + 1.01 - 3.08$$

$$= -0.77$$

Binary-binary interaction

Binary-continous interaction

Conclusion O

$$\mathbb{E}[Y] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2 \\ = \begin{cases} \alpha & \text{when } X_1 = X_2 = 0 \\ \alpha + \beta_2 & \text{when } X_1 = 0, X_2 = 1 \\ \alpha + \beta_1 & \text{when } X_1 = 1, X_2 = 0 \\ \alpha + \beta_1 + \beta_2 + \gamma & \text{when } X_1 = X_2 = 1 \end{cases}$$

$$\mathbb{E} [Y|X_1 = 0, = X_2 = 0] = 0.64$$

$$\mathbb{E} [Y|X_1 = 0, = X_2 = 1] = 0.64 - 0.2 = 0.44$$

$$\mathbb{E} [Y|X_1 = 1, = X_2 = 0] = 0.64 + 0.9 = 1.54$$

$$\mathbb{E} [Y|X_1 = 1, = X_2 = 1] = 0.64 - 0.2 + 0.9 + 3.26$$

$$= 4.6$$

Binary-binary interaction

Binary-continous interaction

Conclusion O

$$\mathbb{E}[Y] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$$

=
$$\begin{cases} \alpha & \text{when } X_1 = X_2 = 0\\ \alpha + \beta_2 & \text{when } X_1 = 0, X_2 = 1\\ \alpha + \beta_1 & \text{when } X_1 = 1, X_2 = 0\\ \alpha + \beta_1 + \beta_2 + \gamma & \text{when } X_1 = X_2 = 1 \end{cases}$$

$$\mathbb{E} [Y|X_1 = 0, = X_2 = 0] = 0.48$$

$$\mathbb{E} [Y|X_1 = 0, = X_2 = 1] = 0.48 + 0.07 = 0.55$$

$$\mathbb{E} [Y|X_1 = 1, = X_2 = 0] = 0.48 + 0.02 = 0.50$$

$$\mathbb{E} [Y|X_1 = 1, = X_2 = 1] = 0.48 + 0.07 + 0.02 + 2.81$$

$$= 3.38$$

Conclusion O

Expliciting the effect of one exposure

Given the model

$$\mathbb{E}[Y|X_1, X_2] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$$

The effects of X_1 are:

$$\mathbb{E}[Y|X_{1} = 1, X_{2} = 0] - \mathbb{E}[Y|X_{1} = 0, X_{2} = 0] \quad (\text{among } X_{2} = 0)$$

= $(\alpha + \beta_{1}) - (\alpha) = \beta_{1}$
 $\mathbb{E}[Y|X_{1} = 1, X_{2} = 1] - \mathbb{E}[Y|X_{1} = 0, X_{2} = 1] \quad (\text{among } X_{2} = 1)$
= $(\alpha + \beta_{1} + \beta_{2} + \gamma) - (\alpha + \beta_{2}) = \beta_{1} + \gamma$

Binary-continous interaction

X2=0

X2=1

X2=0

X2=1

Conclusior O

Expliciting the effect of one exposure

Given the model

$$\mathbb{E}\left[Y|X_1, X_2\right] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$$

The effects of X_1 are:

$$\mathbb{E}[Y|X_{1} = 1, X_{2} = 0] - \mathbb{E}[Y|X_{1} = 0, X_{2} = 0] \quad (\text{among } X_{2} = 0)$$

= $(\alpha + \beta_{1}) - (\alpha) = \beta_{1}$
 $\mathbb{E}[Y|X_{1} = 1, X_{2} = 1] - \mathbb{E}[Y|X_{1} = 0, X_{2} = 1] \quad (\text{among } X_{2} = 1)$
= $(\alpha + \beta_{1} + \beta_{2} + \gamma) - (\alpha + \beta_{2}) = \beta_{1} + \gamma$

Binary-continous interaction

X2=0

X2=1

X2=0

X2=1

Conclusior O

Expliciting the effect of one exposure

Given the model

$$\mathbb{E}\left[Y|X_1, X_2\right] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$$

The effects of X_1 are:

$$\mathbb{E}[Y|X_{1} = 1, X_{2} = 0] - \mathbb{E}[Y|X_{1} = 0, X_{2} = 0] \quad (\text{among } X_{2} = 0)$$

= $(\alpha + \beta_{1}) - (\alpha) = \beta_{1}$
 $\mathbb{E}[Y|X_{1} = 1, X_{2} = 1] - \mathbb{E}[Y|X_{1} = 0, X_{2} = 1] \quad (\text{among } X_{2} = 1)$
= $(\alpha + \beta_{1} + \beta_{2} + \gamma) - (\alpha + \beta_{2}) = \beta_{1} + \gamma$

Binary-continous interaction

X2=0

X2=1

X2=0

X2=1

Conclusior O

Expliciting the effect of one exposure

Given the model

$$\mathbb{E}\left[Y|X_1, X_2\right] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$$

The effects of X_1 are:

$$\mathbb{E}[Y|X_{1} = 1, X_{2} = 0] - \mathbb{E}[Y|X_{1} = 0, X_{2} = 0] \quad (\text{among } X_{2} = 0)$$

= $(\alpha + \beta_{1}) - (\alpha) = \beta_{1}$
 $\mathbb{E}[Y|X_{1} = 1, X_{2} = 1] - \mathbb{E}[Y|X_{1} = 0, X_{2} = 1] \quad (\text{among } X_{2} = 1)$
= $(\alpha + \beta_{1} + \beta_{2} + \gamma) - (\alpha + \beta_{2}) = \beta_{1} + \gamma$

Binary-continous interaction

Different parametrisation in **R**

df\$bmi25 <- factor(df\$bmi>25) summary(lm(log10(vitd) \sim country * bmi25, data = df))

	Estimate St	d. Error t	value P	r(> t)	
(Intercept)	1.51886	0.03839	39.566	<2e-16	**
countryFinland	-0.03368	0.05395	-0.624	0.5333	
bmi25TRUE	0.01363	0.05429	0.251	0.8021	
countryFinland:bmi25TRUE	0.12716	0.07488	1.698	0.0914	•

 $summary(lm(log10(vitd) \sim 0+country:bmi25, data = df))$

I	Estimate St	d. Error t	value Pr	c(> t)			
countryDenmark:bmi25FALSE	1.51886	0.03839	39.57	<2e-16	*		
countryFinland:bmi25FALSE	1.48519	0.03791	39.18	<2e-16	*		
countryDenmark:bmi25TRUE	1.53249	0.03839	39.92	<2e-16	*		
countryFinland:bmi25TRUE	1.62598	0.03497	46.50	<2e-16	*		
Course weedede environment differently d							

Same models expressed differently!

Binary-binary interaction

Binary-continous interaction

Continuous-continous interaction

Conclusion O

Interaction between binary and continuous variables

Binary-binary interaction

 $\begin{array}{c} \text{Binary-continous interaction} \\ \circ \bullet \circ \circ \circ \end{array}$

Continuous-continous interactio

Conclusion

Illustrative datasets

Sinary-binary interaction

Binary-continous interaction

Conclusion

Estimated regression coefficients

Binary-binary interaction

Binary-continous interaction 00000

Conclusior O

$$\mathbb{E}\left[Y|X_1, X_2\right] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$$
$$= \begin{cases} \alpha + \beta_2 X_2 & \text{when } X_1 = 0\\ (\alpha + \beta_1) + (\beta_2 + \gamma) X_2 & \text{when } X_1 = 1 \end{cases}$$

inary-binary interaction

Binary-continous interaction

Conclusion O

$$\mathbb{E}\left[Y|X_1, X_2\right] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$$
$$= \begin{cases} \alpha + \beta_2 X_2 & \text{when } X_1 = 0\\ (\alpha + \beta_1) + (\beta_2 + \gamma) X_2 & \text{when } X_1 = 1 \end{cases}$$

inary-binary interaction

Binary-continous interaction 00000

Conclusion O

Expliciting the statistical model

$$\mathbb{E}\left[Y|X_1, X_2\right] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$$
$$= \begin{cases} \alpha + \beta_2 X_2 & \text{when } X_1 = 0\\ (\alpha + \beta_1) + (\beta_2 + \gamma) X_2 & \text{when } X_1 = 1 \end{cases}$$

X1 • 0 • 1

inary-binary interaction

Binary-continous interaction

Conclusion O

Expliciting the statistical model

$$\mathbb{E}\left[Y|X_1, X_2\right] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$$
$$= \begin{cases} \alpha + \beta_2 X_2 & \text{when } X_1 = 0\\ (\alpha + \beta_1) + (\beta_2 + \gamma) X_2 & \text{when } X_1 = 1 \end{cases}$$

Conclusior O

Expliciting the effect of one exposure

Given the model

$$\mathbb{E}\left[Y|X_1, X_2\right] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$$

The effects of X_1 is:

$$\mathbb{E}[Y|X_1 = 1, X_2 = x] - \mathbb{E}[Y|X_1 = 0, X_2 = x_2] = \beta_1 + \gamma x_2$$

i.e. 0 at $x = -\beta_1/\gamma$ and non-0 otherwise.

Conclusior O

Expliciting the effect of one exposure Given the model

 $\mathbb{E}\left[Y|X_1, X_2\right] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$

The effects of X_1 is:

$$\mathbb{E}[Y|X_1 = 1, X_2 = x] - \mathbb{E}[Y|X_1 = 0, X_2 = x_2] = \beta_1 + \gamma x_2$$

i.e. 0 at $x = -\beta_1/\gamma$ and non-0 otherwise.

▲ Non-0 effect of X_1 except at $X_2 \approx 0.33$ Centering X_2 around this value would make $\beta_1 = 0$

Conclusior 0

Expliciting the effect of one exposure Given the model

 $\mathbb{E}\left[Y|X_1, X_2\right] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$

The effects of X_1 is:

$$\mathbb{E}[Y|X_1 = 1, X_2 = x] - \mathbb{E}[Y|X_1 = 0, X_2 = x_2] = \beta_1 + \gamma x_2$$

i.e. 0 at $x = -\beta_1/\gamma$ and non-0 otherwise.

▲ Non-0 effect of X_1 except at $X_2 \approx -1.5$ Centering X_2 around this value would make $\beta_1 = 0$

Conclusion O

Expliciting the effect of one exposure Given the model

 $\mathbb{E}\left[Y|X_1, X_2\right] = \alpha + \beta_1 X_1 + \beta_2 X_2 + \gamma X_1 : X_2$

The effects of X_1 is:

$$\mathbb{E}[Y|X_1 = 1, X_2 = x] - \mathbb{E}[Y|X_1 = 0, X_2 = x_2] = \beta_1 + \gamma x_2$$

i.e. 0 at $x = -\beta_1/\gamma$ and non-0 otherwise.

▲ Non-0 effect of X_1 except at $X_2 \approx 0$ Centering X_2 around this value would make $\beta_1 = 0$

Binary-binary interaction

Binary-continous interaction 00000 Continuous-continous interaction

Conclusion

Reference I

Blot WJ, McLaughlin JK, W. D. A. D. G. R. P.-M. S. B. L. S. J. S. A. F. J. J. (1988). Smoking and drinking in relation to oral and pharyngeal cancer. *Cancer Res*, 48(11):3282–3287.