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Background and aims

The section of biostatistics at UCPH runs a statistical consulting
service for the faculty of health science. Here we often encounter
longitudinal data and other kinds of repeated measurements.

Curiously we found that available R-packages were unable to
handle some of the study designs most often employed by our
health science collegues. This was our motivation for creating the
LMMstar package (1st version on CRAN october 2021).

Today we will teach you about linear mixed models (LMMs) for
balanced repeated measurement designs, aka mixed models for
repeated measurements (MMRMs), and how to analyze them with
LMMstar using health science case studies for illustration.

2 / 57



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Outline

Part 1: Linear mixed models for repeated measurements

Practical 1

Part 2: Analysis of baseline follow-up studies

Practical 2

Part 3: Advanced topics (separate slides)

References

Supplementary: Model diagnostics

3 / 57



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Repeated measurements

Repeated measurements refer to data where the same outcome
is measured several times on the same subjects, e.g. on different
occasions or with different treatments.

This allows us to study treatment differences and changes over
time within the same subjects and the factors that influence them.

By comparing the responses of the same individual under different
circumstances, we eliminate extraneous but unavoidable sources of
random variation among individuals. Thus we can obtain more
accurate estimates and more certain statistical conclusions.

However, since repeated measurements are typically correlated, we
need dedicated models to handle them. We cannot use models
which assume that observations are independent.
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Examples of study designs with repeated measurements

Follow-up studies.
I Repeated measurements over time from one or more groups

subjects, randomized or non-randomized.

Block designs.
I Same subjects receiving different treatments at the same time,

e.g. at different locations of the body.

Crossover studies.
I Same subjects receiving different treatments in different

periods of time with suitable wash-out periods inbetween.

Repeatability or reproducibility study.
I Repeated measurements with same and/or different devices to

assess their mutual bias and/or precision.
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Notation

We describe repeated measurements data as:

I Subjects i = 1, . . . , n.

I Repetitions j = 1, . . . , ki.

I Outcomes Yi1, . . . , Yiki (from subject i).

I Covariates Xij1, . . . , Xijp (for subject i at repetition j).

In most applications the repetitions are the same for all subjects
in which case we have a balanced study design (ki = k for all i).

Today we will only teach you models for balanced study designs.
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Note about incomplete data

In practice it often happens that the data from a repeated
measurements study is incomplete because some of the
observations are missing.

This does not change the fact that the study design is balanced
and a linear mixed models for a balanced design can still be
applied.

In fact, the linear mixed model handles the missing data optimally
under the assumption that it is missing at random (MAR).
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The linear mixed model for repeated measurements

We assume a linear model for the outcome vectors:
Yi1
Yi2
...
Yik

 =


Xi11 Xi12 . . . Xi1p

Xi21 Xi22 . . . Xi2p
...

...
...

Xik1 Xik2 . . . Xikp

 ·

β1
β2
...
βp

+


εi1
εi2
...
εik


Note that means are modeled similar to ordinary linear models by
including covariates called fixed effects. These can be continuous,
categorical or of mixed type. Interactions may also be included.

Assumption: Error terms are multivariate normal εi ∼ N (0,Σi).

The covariance is often assumed to be the same for all subjects,
but LMMstar allows for different Σ’s in different groups.
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Modeling covariances

There are multiple competing ways of modeling covariances in
linear mixed models.

Random effects models are the original linear mixed models
invented in the 1980s and still the most often used in practice. In
these correlations are induced by subject specific random effects
that are shared between the repeated measurements.
I R-functions: lme4::lmer and nlme::lme.

Covariance pattern models were developed in the 1990s. They
allow us to model covariance more directly and flexibly than the
original models. I.e. with less risk of bias due to misspecification.
I R-packages: LMMstar::lmm and nlme::gls.
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Covariance patterns in LMMstar
Unstructured covariance, UN(

σ2
1 σ1σ2ρ12 σ1σ3ρ13 σ1σ4ρ14

σ1σ2ρ12 σ2
2 σ2σ3ρ23 σ2σ4ρ24

σ1σ3ρ13 σ2σ3ρ23 σ2
3 σ3σ4ρ34

σ1σ4ρ14 σ2σ4ρ24 σ3σ4ρ34 σ2
4

)

Fully flexible pattern where all
variances and correlations are
potentially different.

Blocked comp.sym, CS(∼block)(
σ2

1 σ2
1ρ1 σ1σ2ρ12 σ1σ2ρ12

σ2
1ρ1 σ2

1 σ1σ2ρ12 σ1σ2ρ12
σ1σ2ρ12 σ1σ2ρ12 σ2

2 σ2
2ρ2

σ1σ2ρ12 σ1σ2ρ12 σ2
2ρ2 σ2

2

)

One variance and one correlation per
block, one cross-correlation for each
pair of blocks.

Compound symmetry, CS(
σ2 σ2ρ σ2ρ σ2ρ
σ2ρ σ2 σ2ρ σ2ρ
σ2ρ σ2ρ σ2 σ2ρ
σ2ρ σ2ρ σ2ρ σ2

)

All variances and correlations are
identical, like in a model with a
random effect of subject.

Independence ID(
σ2 0 0 0
0 σ2 0 0
0 0 σ2 0
0 0 0 σ2

)

Covariance pattern models
include ordinary linear models
as a special case.
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Likelihood inference
Inference is based on the likelihood function:

n∏
i=1

( 1
2π|Σ(θ)|

) k
2

exp
{
−(yi −Xiβ)T Σ(θ)−1(yi −Xiβ)

2

}

If Σ = Σ0 is known, then the MLE for β is:

β̂ =
{

n∑
i=1

(XT
i Σ−1

0 Xi)
}−1 n∑

i=1
XT

i Σ−1
0 Yi (GLS)

Restricted likelihood
1. Fix any working covariance to get an initial estimate of β.
2. Estimate the covariance from the ’likelihood’ of the resulting

residuals, a non-linear optimization problem.
3. Re-estimate β using this covariance.
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Case: A single group follow-up study

Study population: n = 20 gastric bypass patients.

Repeated measurements: 3 months before, 1 week before, 1
week after, and 3 months after surgery.

Outcomes: Bodyweight, gut hormones, and many other.

Research aims: Describe fysiological changes in response to the
surgery, including the pre-surgery diet.
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Descriptive statistics

Spaghettiplot Sample means and SDs

time obs mean sd
3m before 20 129.0 20.3
1w before 20 121.2 18.9
1w after 20 115.7 18.3
3m after 20 102.4 17.1

Sample correlations

w1 w2 w3 w4
w1 1.00 0.99 0.99 0.95
w2 0.99 1.00 1.00 0.96
w3 0.99 1.00 1.00 0.97
w4 0.95 0.96 0.97 1.00
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Modeling considerations

We have quantitative repeated measurements that are approx.
multivariat normally distributed (possibly after transformation).
I We can use a linear mixed model.

We are interested in the changes in weight over time.
I Fixed effect: time (categorical, i.e. a factor in R)

How do we model the covariance?
I We have a balanced design, i.e. four follow-up times,

which are the same for all the study participants.
I We don’t have to make any restrictive assumptions about

the covariance. We can apply an unstructured pattern.
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R-syntax
The core functionality of LMMstar is the lmm function which
creates the linear mixed model objects:

fit <- lmm(weight~time,
repetition=~visit|id,
structure="UN",
data=long)

I Use lmm to fit a linear mixed model with a covariance pattern.
I Outcomes and covariates are specified in a model formula,

similar to ordinary linear models (weight∼time).
I Use repetition to specify repeated measurements identified

by time and subjects identified by id

I Use structure=”UN” to choose the unstructured pattern.
I Data should be in the long format. . .
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Wide and long data format

Data is often stored in wide format with one record per subject:

id weight1 weight2 weight3 weight4 glucagonAUC1 . . .
2 165.2 153.4 149.2 132.0 12142.50 . . .
3 109.7 101.6 97.7 87.1 10321.35 . . .
. . . . . . . . .

However, to make linear mixed model analyses we need data to be
in the long format with multiple records per subject:

id visit time weight glucagon.auc
2 1 3monthsBefore 165.2 12142.5
2 2 1weekBefore 153.4 14083.5
2 3 1weekAfter 149.2 10945.5
2 4 3monthsAfter 132.0 7612.5
. . . . .
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Wide to long format

Data can be transformed from wide to long format in several
different ways. One option is to use the reshape function:

long <- reshape(wide,

direction=’long’,
idvar=’id’,
varying=list(
c(’weight1’,’weight2’,’weight3’,’weight4’),
c(’glucagonAUC1’,’glucagonAUC2’,’glucagonAUC3’,’glucagonAUC4’)

),
v.names=c(’weight’,’glucagonAUC’),
timevar=’visit’

)
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Extractor functions for lmm objects

summary: Detailed model summary

confint: Confidence intervals and other related statistics,
including standard errors and p-values.

sigma: Estimated covariance matrix.

anova: F-tests of fixed effects/linear contrasts.

predict: Predictions based on covariates and other outcomes.

residuals: Various residuals for diagnostics.

plot: Illustration of model fit.
18 / 57



u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Summary of fixed effects

Estimates, confidence intervals and p-values for the fixed effects
(in this case changes in mean weight since baseline).

Fixed effects: weight ~ time

estimate se df lower upper p.value
(Intercept) 128.97 4.532 18.981 119.483 138.457 <0.001 ***
time1weekBefore -7.73 0.697 18.974 -9.19 -6.27 <0.001 ***
time1weekAfter -13.27 0.839 18.969 -15.027 -11.513 <0.001 ***
time3monthsAfter -26.605 1.549 18.964 -29.848 -23.362 <0.001 ***

Degrees of freedom were computed using a Satterthwaite approximation

Note: If you want to estimate changes in mean between other
follow-up times, change the reference time with relevel or use
anova to specify the relevant linear contrasts.
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Summary of covariance parameters

Residual variance-covariance: unstructured

- correlation structure: ~visit
1 2 3 4

1 1.000 0.990 0.986 0.946
2 0.990 1.000 0.997 0.959
3 0.986 0.997 1.000 0.966
4 0.946 0.959 0.966 1.000

- variance structure: ~visit
standard.deviation ratio

1 20.26942 1.0000000
2 18.91022 0.9329435
3 18.27535 0.9016220
4 17.05391 0.8413614

Same as summary statistics since the model is fully flexible and
there are no missing observations for this outcome.
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Linear mixed model vs paired t-test

Estimate (95% CI) of mean weight losses since baseline
Period Paired t-test lmm

Exact degrees of freedom Satterthwaite degrees of freedom
-3m to -1w -7.73 (-9.19;-6.27), P<0.001 -7.73 (-9.19;6.27), P<0.001
-3m to +1w -13.27 (-15.03;-11.51), P<0.001 -13.27 (-15.03;-11.51), P<0.001
-3m to +1m -26.61 (-29.85;-23.36), P<0.001 -26.61 (-29.85;-23.36), P<0.001

We have a fully flexible model and no missing data. Hence
results are identical up to a small numerical error.

Linear mixed models handle missing data that are missing at
random optimally whereas t-tests make complete case analysis.

Paired t-tests should be preferred when sample size is small
(n < 15 per group) as the approximation of degrees of freedom
in the linear mixed model may become unreliable.
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Missing data

Illustrative example: Suppose three of the most obese study
participants were feeling sick and didn’t show up at the 3rd visit.

Sample mean at third visit is biased whereas the mixed model
can predict the missing values from the neighbour observations.
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Practical 1

Run the program gastricbypass.R to reproduce the analysis of
the gastric bypass study.

If you have spare time, try to make a similar analysis of the second
outcome in the data glucagonAUC.

I How do the analyses of the two outcomes compare?

I How does the covariance pattern model compare with the
random effects model with a random effect of id?
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Typical set-up for longitudinal data analysis

Two or more groups of subjects followed over time.
I groups can be randomized or non-randomized
I time can be calender time, age, or duration of

illness/treatment

Typical applications:
I Compare the time-evolution of a biomarker

between patients and healthy controls.
I Evaluate the effect of a novel treatment

in a randomized baseline follow-up study.

Do the time courses differ between the groups?
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Observational vs randomized studies

In an observational study, we have two or more samples from
inherently different populations we want to compare.
I Group differences may be due to confounders, so we would

like to adjust for these as covariates in the analysis.
I Often we do this by including baseline covariates (and their

interactions with time) in the linear mixed model.

In a randomized study, we have two or more samples from the
same population, randomized to different treatments.
I Genuine group differences can only be due to treatment, so

we do not have to worry about potential confounders
(unless we have missing data).

I We gain power from making baseline adjustment (→).
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Case: ABETA (observational study)

Study population: n = 87 outpatients with bipolar disorder and
n = 44 age and gender matched healthy controls.
Repeated measurements: at inclusion and at one-year follow-up.
Outcomes: Functioning assessment (FAST), perceived stress
(PSS), and quality of life (QoL), clinical outcomes, and other.
Research aims: Describe psycho-social functioning in patients
during and after an affective episode.
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Descriptive statistics
Bipolar disorder (BD) Healthy controls (HC)

> summarize(fast~year+group,
data=long, na.rm=TRUE)

year group obs missing mean sd
0 HC 44 0 1.61 1.78
1 HC 41 3 0.78 1.13
0 BD 87 0 15.58 11.50
1 BD 73 14 11.03 10.93

BD fast0 fast1
fast0 1.000 0.308
fast1 0.308 1.000

HC fast0 fast1
fast0 1.000 0.755
fast1 0.755 1.000
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Modeling considerations

We are interested in comparing the outcomes of the groups and
their evolution with time. Hence we include group, time, and the
group*time interaction as fixed effects (all categorical).

Idealy, design variables (age and sex) should also be included
along with potential confounders, but we omit them to save space.

We have a balanced design with two follow-up times. Hence we
can apply an unstructured covariance pattern. . .

However, the patients form a more heterogeneous group and have
less predictable time evolutions than the healthy controls. Hence
we will need heterogeneous covariances with distinct parameters
for each group.
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Syntax

LMMstar can fit heterogeneous covariance pattern models.

fit2 <- lmm(fast~group*year,
repetition=~year|id,
structure=UN(~group),
data=long,
control = list(optimizer = "FS"))

I Use structure=UN with the further argument ∼group to
have potentially different covariances for the two groups.

I In order to fit a heterogeneous covariance pattern, use
optimizer = "FS" instead of the default "gls".
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Summary of fixed effects

Fixed effects: fast ~ group * year

estimate se df lower upper p.value
(Intercept) 1.614 0.269 43.009 1.072 2.155 < 0.001 ***
groupBD 13.961 1.262 93.946 11.455 16.467 < 0.001 ***
year1 -0.846 0.274 43.091 -1.4 -0.293 0.00355 **
groupBD:year1 -3.643 0.951 88.699 -5.531 -1.754 < 0.001 ***

Uncertainty was quantified using model-based standard errors (column se).
Degrees of freedom were computed using a Satterthwaite approximation (column df).
The columns lower and upper indicate a 95% confidence interval for each coefficient.

Substantially worse functioning in the bipolar patients at entry.
Improvement in both groups over time, but more in the patient
group than in the healthy control group.
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Summay of covariance parameters

Residual variance-covariance: stratified unstructured

- correlation structure: ~year:group - 1

$HC
0 1

0 1.000 0.303
1 0.303 1.000

$BD
0 1

0 1.000 0.753
1 0.753 1.000

- variance structure: ~0 + group + year:group
standard.deviation ratio

sigma.0:HC 1.781245 1.0000000
sigma.0:BD 11.500892 1.0000000
sigma.1:HC 1.127808 0.6331572
sigma.1:BD 10.889847 0.9468697

Estimates are similar to the summary statistics, but not exactly
the same since there are missing observations for this outcome.
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Homogeneous vs heterogeneous covariances

Unrecognized heterogeneity doesn’t lead to biased estimates unless
there are severe issues with missing data. Standard errors, however,
will be biased unless heterogeneity is accounted for.

Heterogeneous Homogeneous
UN-Pattern UN-Pattern

Effect Estimate SE Estimate SE Bias
Baseline mean BD 15.6 1.23 15.6 1.01 -18%
Baseline mean HC 1.6 0.27 1.6 1.42 +425%

Difference 14.0 1.26 14.0 1.75 +39%
Change at follow-up BD -4.5 0.91 -4.5 0.74 -19%
Change at follow-up HC -0.9 0.27 -0.9 1.00 +270%

Difference -3.6 0.95 -3.6 1.24 +31%

SE too small SE too large.
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Case study: CKD (randomized study)

Study population: n = 51 patients newly diagnosed with chronic
kidney disease randomized to Eplerenone or standard care.

Repeated measurements: at 0 weeks (baseline), 12 weeks
(safety) and 24 weeks (end point) after treatment initiation.

Outcomes: Augmentation index (aix), pulse wave velocity, other.

Research aims: Evaluate effect of Eplerenone vs standard care.
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Descriptive statistics

time group obs missing mean sd
0 A 24 1 24.6 9.38

12 A 24 1 25.3 10.60
24 A 24 1 27.3 8.70
0 B 26 0 22.3 11.11

12 B 24 2 19.9 13.70
24 B 22 4 20.4 11.43

A aix0 aix12 aix24
aix0 1.00 0.79 0.76
aix12 0.79 1.00 0.80
aix24 0.76 0.80 1.00

B aix0 aix12 aix24
aix0 1.00 0.68 0.73
aix12 0.68 1.00 0.82
aix24 0.73 0.82 1.0036 / 57
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Modeling considerations

Data looks as from an observational study with two groups
followed over time, but in this case groups are randomized.

The baseline measurement is taken before treatment initiation.
Since we have two random samples from the exact same
population, their mean parameters must be identical.

We can estimate the treatment effect as the difference in means at
follow-up. Since baseline means are identical, this is the same as
the difference in change in mean from baseline to follow-up.

Similarly, the variances for the two groups should be identical at
baseline and potentially different at follow-up.
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Syntax
1. Define a time-varying treatment variable:

long$treat <- long$allocation
long$treat[long$time==0] <- "A"

table(long$time, long$treat)

A B
0 51 0
12 25 26
24 25 26

2. . . . and its interaction with time:
long$time.treat <- interaction(long$time, long$treat)

3. Leave out the main effect of treat in the model formula:
fitcc <- lmm(aix~time+time:treat,

repetition=~time.treat|id,
structure="UN",
data=long,
control = list(optimizer = "FS"))
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Summary of fixed effects

Fixed effects: aix ~ time + time:treat

estimate se df lower upper p.value
(Intercept) 23.255 1.443 49.909 20.356 26.154 <0.001 ***
time12 1.299 1.364 23.051 -1.521 4.12 0.3506
time24 3.476 1.248 25.836 0.909 6.042 0.0099 **
time12:treatB -2.158 2.52 36.336 -7.267 2.951 0.3974
time24:treatB -4.069 2.047 38.905 -8.211 0.072 0.0539 .

Uncertainty was quantified using model-based standard errors (column se).
Degrees of freedom were computed using a Satterthwaite approximation (column df).
The columns lower and upper indicate a 95% confidence interval for each coefficient.

We find a borderline significant improvement i AIX with
Eplerenone conpared to control at final follow-up (P=0.054).
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Summary of covariance parameters

- correlation structure: ~time.treat
0.A 12.A 24.A 12.B 24.B

0.A 1.000 0.810 0.786 0.694 0.735
12.A 0.810 1.000 0.811 NA NA
24.A 0.786 0.811 1.000 NA NA
12.B 0.694 NA NA 1.000 0.817
24.B 0.735 NA NA 0.817 1.000

- variance structure: ~time.treat
standard.deviation ratio

0.A 10.276029 1.0000000
12.A 11.056805 1.0759804
24.A 9.054361 0.8811148
12.B 13.957917 1.3582988
24.B 11.391086 1.1085105

Some of the correlations are unidentifiable, since no one gets
both treatment A and B. This is harmless.
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Other approaches to randomized follow-up studies

Vickers & Altman: Analysing controlled clinical trials with baseline
and follow up measurements, BMJ 323, 1123–1124, (2001).

Considers three classical approaches:

1. Two-sample t-test based on outcome at follow-up.

2. Two-sample t-test based on change from baseline to follow-up

3. ANCOVA including baseline as a covariate.

Yfollow-up = β0 + β1 · I{treat}+ β2 · Ybaseline + ε

Conclusion: ANCOVA is always most efficient.
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cLMM vs ANCOVA

The constrained linear mixed model (cLMM):
I aka constrained repeated measures or cMMRM.
I Include baseline as outcome in a constrained linear mixed

model where group means are identical at baseline.

Merits:
I Equivalent to ANCOVA with no missing data.
I By default handles missing data (MAR) optimally,

ANCOVA by default makes complete case analysis.
I Handles heterogeneous covariances more easily.
I Handles multiple follow-up measurements more easily.
I Model fit is easier to visualize.
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Predicted values
Estimated AIX (%) for the average patient in the population had
he/she received either Eplerenone or standard care.

Note: In the ANCOVA the predicted values are subject specific
because they depend on the value of the outcome at baseline.
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Practical 2

Run the programs abeta.R and ckd.R to reproduce the analyses
of the two case studies.

If you have spare time, try to compare the results you get from:

I A constrained vs unconstrained model for the mean.

I A homogeneous vs heterogeneous covariance pattern.
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Diagnostics for linear mixed models

Yi = Xiβ + εi, where εi ∼ N (0,Σi)

.
We can estimate the error terms by the residuals

ri = Yi −Xiβ̂ ≈ εi

and use them for model diagnostics like in a linear model:

1. Plots of residuals against predicted values/covariates.
2. QQplots of residuals to asses normal distribution.

However: Contrary to ordinary linear models, the residuals will be
correlated and may have heterogeneous variances.
I Hence we ought to standardize them first. . .
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Standardized residuals

Pearson residuals

r?
i = diag(Σ̂i)−1/2(Yi −Xiβ̂)

Divide by estimated standard deviations, variance ≈ 1.

Studentized residuals

r̃?
i = diag(Σ̂(−i)

i )−1/2(Yi −Xiβ̂
(−i))

Jackknife estimates leaving out the i’th subject makes it easier to
detect outliers. Very similar to the Pearson residuals if sample size
is large and there aren’t many outliers.

However: The residuals will still be correlated. . .
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De-correlated residuals

Scaled residuals

r??
i = L

−1/2
i (Yi −Xiβ̂) ≈ N (0, I)

where Li is a lower triangular matrix such that LiL
T
i = Σ̂i.

It can be shown that the scaled residuals are the pearson residuals
from the ordinary linear models dynamically predicting each
consecutive outcome based on the previous outcomes and the
covariates in the linear mixed model:

r??
i1 = r?

i1

r??
ij+1 = Yij+1 − Ê[Yij+1|Yi1, . . . , Yij ]√

V̂ [Yij+1|Yi1, . . . , Yij ]
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Diagnostics in LMMstar
Use the residuals function to obtain:

fitted: Predicted values based on covariates.
r.response: Ordinary residual.
r.pearson: Pearson residual.
r.studentized: Studentized residual.
r.scaled: De-correlated residual.

diag <- residuals(fit, type=’all’, keep.data=TRUE)

id visit weight fitted r.response r.studentized r.scaled
1 1 127.2 128.970 -1.770 -0.08959219 -0.08732367
1 2 120.7 121.240 -0.540 -0.02929782 0.40462002
1 3 115.5 115.700 -0.200 -0.01122800 0.21188023
1 4 108.1 102.365 5.735 0.34502276 1.29889231
2 1 165.2 128.970 36.230 1.83385604 1.78742177
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Residuals
Original data, response, studentized, and scaled residuals.

Scaled residuals are independent if the model is well specified.
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Diagnostics
Residual- and QQplots of studentized and scaled residuals.

Studentized residuals indicate some skewness in the marginal distribution.
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How important is the normal distribution?

The standard model assumption is that outcomes follow a
multivariate normal distribution.

BUT: Linear mixed models are robust (the central limit theorem).
I As long as the linear model for the mean is correct and the

covariance is well specified.
I If sample size is not too small.
I If there aren’t too many missing observations.
I If the distribution of the data is not too skew.

Highly skew data should be transformed.
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