
Refresher on statistical notations

This document introduces:

• mathematical symbols: min(x, y), T ∈ [0, τ ], 1T ≤C , ∑n
i=1 Ni,

∫ t
0 λ(s)ds,

exp(−Λ(t)), log(HR).

• fundamental notions in probability (probability, joint probability, condi-
tional probability, expectation) and corresponding notation (P, E)

• fundamental notions in statistics (estimand, estimator, estimate, statisti-
cal inference, likelihood) and corresponding notation (ψ, ψ̂)

The aim of the document is to re-familiarize you with statistics in order to make the
lectures easier to follow. Mathematical notations can, at first sight, seem obscur but
they are very convenient shortcut, avoiding to write or say long sentences.

The recommanded reading program is the following:

• to prepare day 1 : minimum & maximum (1.1), interval (1.2), indicator function
(1.3), sum (1.4), integral (1.5), exponential (1.6), probability (2.1, 2.2, 2.3).

• to prepare day 3 : , logarithm (1.7), estimand, estimator, estimate (3.1), statis-
tical inference (3.2), likelihood (3.3)

• to prepare day 9 : expectation (2.4)

△! This document is much more dense in mathematical notations and abstract
than the lectures and exercises. Do not worry if it is not crystal clear after a
first read. Maybe it will make more sense to come back to it after the lecture if
something was unclear.
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1 Mathematical symbols

1.1 Minimum & maximum
min(5, 1) = 1 denotes the minimum between two numbers (here 5 and 1).

Considering two variables T and C, then T ∗ = min(T,C) is the minimum between
the values taken by the variables. For instance if T is the time to death and C is
the follow-up time planned in the study then T ∗ is the observed follow-up time
since follow-up is terminated due to death of the patient or end of the study period,
whichever comes first.

Note: In some books or articles min(5, 1) is denoted by 5∧1. Similarly the maximum,
e.g. max(5, 1), is denoted by 5 ∨ 1.

1.2 Interval
In epidemiology we often restrict the study to a specific time horizon, e.g., we may
be interest in the COVID-19 incidence rate in 2021. Imagine we measure time (in
years) since the start of the infection, where for simplicity the start is taken to be 1st

of January 2020. Then t=1 refers to 1st of January 2021 and t=2 the 1st of January
2022.

• t ∈ [1, 2] refers to all timepoints between t=1 and t=2, including t=1 and t=2.

• t ∈]1, 2] or t ∈ (1, 2] refers to all timepoints between t=1 and t=2, excluding
t=1 but including t=2.

• t ∈ [1, 2[ or t ∈ [1, 2) refers to all timepoints between t=1 and t=2, including
t=1 and excluding t=2. This corresponds to the year 2021 (i.e. from 1st of
January 2021 to just before 1st of January 2022 i.e. end of 31st of December
2021).

• t ∈]1, 2[ or t ∈ (1, 2) refers to all timepoints between t=1 and t=2, excluding
t=1 and t=2.

The symbol ∞ (or +∞) denotes infinity, i.e. infinitely large values. So T ∈
[0,+∞[ means a number that is 0 or above 0 and below infinity i.e. any non-negative
number.

Strictly speaking intervals are only defined over a continuum of values. For dis-
crete values such as 1, 2, 3, 4 (here 1.5 is not a possible value) one should use the
set notation: {1, 2, 3, 4} that can be abreviated into {1, . . . , 4}.
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1.3 Indicator function
1• is the indicator function, taking value 1 if • is true and 0 if • is false. For instance
if T is the time to death and C is the planned follow-up time:

• 1T ≤C is one if death occurred during the follow-up time (no censoring) and
0 if it occurred outside of the follow-up time (censored). It is also written
1{T ≤ C}.

1.4 Sum
The sum of a serie of numbers (e.g. 1 + 2 + 3 + 4) or variables (e.g. N1 +N3 +N4 +
N4 +N5) is commonly abreviated using the capital sigma symbol: ∑4

i=1 i or ∑5
i=1 Ni.

In the course we will use this notation to explain how to estimate an incidence
rate using the ratio of the number of cases divided by the time at risk. Both the
numerator and denominator are sums over the number of persons in the cohort (say
n) of either the individual-specific indicator of an event (Ni ∈ {0, 1}) or follow-up
time (Ti) where i refers to the i-th individual:

λ̂ =
∑n

i=1 Ni∑n
i=1 Ti

= N1 +N2 + . . .+Nn

T1 + T2 + . . .+ Tn

1.5 Integral
An integral can be seen as continuous sum. Imagine we are given the instantaneous
risk of death1 at time t which we will denote λ(t):

• discrete time (say days): we cumulate the risk time using ’+’∑5
s=1 λ(s) = λ(1) + λ(2) + λ(3) + λ(4) + λ(5).

• continuous time: we cumulate the risk using an integral: Λ(5) =
∫ 5

0 λ(s)ds
which is the area under the curve defined by the function λ : t 7→ λ(t) (see
Figure 1).

If λ(t) is piecewise constant (i.e. only change when changing day) the two are equal:

Λ(5) =
∫ 5

0
λ(s)ds =

∫ 1

0
λ(s)ds+

∫ 2

1
λ(s)ds+

∫ 3

2
λ(s)ds+

∫ 4

3
λ(s)ds+

∫ 5

4
λ(s)ds

= λ(1)
∫ 1

0
ds+ λ(2)

∫ 2

1
ds+ λ(3)

∫ 3

2
ds+ λ(4)

∫ 4

3
ds+ λ(5)

∫ 5

4
ds

= λ(1) + λ(2) + λ(3) + λ(4) + λ(5)

1what this exactly is will be seen during the first lecture
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Figure 1: Instantaneous risk (left panel) and its integral over time (right panel).
Each point on the right panel (say at time t) corresponds to the area under the curve
from the left panel between time 0 and time t.

1.6 Exponential
The exponential function is a mathematical function defined on the real line. It is
strictly increasing, taking values between 0 and ∞. It is denoted exp(x) or equiva-
lently ex. One key property is that:

• exp(a+ b) = exp(a) exp(b), thus exp(0) = 1 and exp(−a) = 1/ exp(a)

During the course we will use the exponential function to model the covariate effect
on the hazard: λ(t|X) = λ0(t) exp (βX):

• when X = 0 then λ(t|X = 0) = λ0(t) exp(0) = λ0(t).

• the hazard ratio λ(t|X=x+1)
λ(t|X=x) = exp(β(x+1))

exp(βx) = exp (β(x+ 1 − x)) = exp(β).

It will also be used to model the survival2 based on the modeled cumulative hazard:
S(t|X) = exp (−Λ(t|X)) = exp

(
−

∫ t
0 λ(s|X)ds

)
:

• the survival decreases as the cumulative hazard increases.

• the survival equals 1 when the cumulative hazard is 0 and goes to 0 as the
cumulative hazard increases to infinity.

2what this exactly is will be seen during the first lecture. It is also introduced at the end of the
next page
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1.7 Natural logarithm
The natural logarithm is a mathematical function defined on positive numbers. It is
strictly increasing, taking values between −∞ and ∞. It is denoted log(x). One key
property is that:

• log(a) + log(b) = log(ab), thus log(1) = 0 and log(1/a) = − log(a)

The logarithm is the inverse of the exponential function (i.e. log(exp(x)) = x) which
can be, for instance, used to re-express regression coefficient as a ratio of log survival.
Indeed under the model S(t|X) = exp (−Λ(t|X)) = exp (−Λ0(t) exp(βX)):

log(S(t|X = x+ 1))
log(S(t|X = x)) = −Λ(t|X = x+ 1)

−Λ(t|X = x) = exp(β)
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2 Probabilistic background

2.1 Probability of an event
The probability of an event is a number between 0 and 1 indicating how likely is an
event to occur. Such an event could be A: "landing on tail" or B: "landing on head"
when tossing a fair coin.

P [A] = 0.5 (1)

is then a concise way to express "A fair coin has probability 0.5 to land on tail".

Medical studies typically involve more complex outcome than binary, e.g. dis-
ease diagnosis is the result of an examination that revealed a number of symptoms
associated with the disease. Random variables are functions that maps the set of
possible outcomes to numerical values. In the coin example the possible outcomes
are "landing on tail" and "landing on head". Example of random variables are:

• At: mapping "landing on tail" to 1 and "landing on head" to 0.

• Ah: mapping "landing on tail" to 0 and "landing on head" to 1.

• A0: mapping "landing on tail" to -0.5 and "landing on head" to 0.5.

Probabilities can then be expressed relative to random variables, e.g. P [At = 1] = 0.5,
P [Ah = 0] = 0.5, P [A0 = −0.5] = 0.5 are all equivalent to Equation 1. What to use
depends on the aim and on convenience.

During the course we will consider more complex probabilities. For instance
consider investing how long patients survive after being diagnosed of lung cancer. We
will typically introduce T the time to death, implicitely defining a random variable
mapping the history of the patient (date of birth, date of long cancer diagnosis, date
of death) to a number.

△! here the definition is ambiguous. One would typically understand that the
number is the difference between the date of death and the date of long cancer
diagnosis, expressed in years.

We can then define the survival probability as:

S(t) = P [T > t]

which is the probability that time to death is (strictly) greater than t. When t

is expressed in years, S(1) denotes the probability that time to death is (strictly)
greater than 1 year, i.e. the 1 year survival.
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2.2 Joint probability
The joint probability is the probability of two events co-occurring. If we flip two fair
coins and denote by A1 the event "the first coin lands on tail" and by A2 the event
"the second coin lands on tail", then:

P [A1, A2] = 0.25

is a concise way to express "Two fair coins have probability 0.25 to both land on
tail".

In epidemiology it is frequent that T is a time to first event. One event will be
the event of interset, say long cancer diagnosis (∆ = 1), and the other a competing
event, say death (∆ = 2). Then:

P [T ≤ t,∆ = 1] = 0.03

is a concise way to express "the probability that the first event happen before time
t and it is a long cancer diagnosis is 0.03". When t is expressed in years, a more
’common language’ formulation would be "the risk for the patient to be diagnosed
with long cancer within t-years is 0.03" (since to be diagnosed one has to be alive it
is unecessary to precise which event came first). Similarly:

P [T ≤ t,∆ = 2] = 0.2

would be a concise way to express "the risk for the patient to die within t-years free
of long cancer is 0.2".

2.3 Conditional probability
The conditional probability is the probability of one event occurring given that an-
other has occurred. Consider a study following people after long cancer diagnosis
that may (X = 1) or may not (X = 0) have previously suffered from a stroke attack.
If we denote by T the time to death then:

P [T ≤ t|X = 1]

expresses the probability of death within t years after a diagnosis of cancer for a
patient with history of stroke. This would typically bigger than:

P [T ≤ t] = P [T ≤ t|X = 0]P [X = 0] + P [T ≤ t|X = 1]P [X = 1]

the probability of death within t years after a diagnosis of cancer for a person for
which we do not know his history stroke at diagnostic. As shown on the right hand
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side3, this probability would be a weighted average of the probability of death before
time t for someone without history of stroke and the probability of death before time
t for someone with history of stroke, the weights being relative to the probability to
not having experience a stroke and the probability to have experienced a stroke.

• An interactive visualization of the conditional probability can be found at
https://seeing-theory.brown.edu/compound-probability/index.html#section3.

△! Conditioning on future events is typically a bad idea as it can lead to substantial
bias. For instance conditioning on whether a cancer patient experience a stroke
during the study time may severely bias downward the probability of death
since to be able to experience a stroke one needs to be alive. This is commonly
refered to as immortal time bias.

2.4 Expectation
One common example of expectation is the gain one would obtain in average when
playing a gambling game. More precisely suppose one can bet on 5 numbers returning
respectively p1, p2, p3, p4, p5 DKK. If numbers are drawn with equal probability 0.2
the expected gain is:

E [X] = 0.2 ∗ p1 + 0.2 ∗ p2 + 0.2 ∗ p3 + 0.2 ∗ p4 + 0.2 ∗ p5

where X denotes the random variable mapping what has been drawn to the gain.
For instance if only number 5 provides a gain and this gain is 100DKK then:

E [X] = 0.2 ∗ 0 + 0.2 ∗ 0 + 0.2 ∗ 0 + 0.2 ∗ 0 + 0.2 ∗ 100 = 20DKK

This concept will mostly be useful at the end of the course when we will consider
models where the risk of death of the patient may depend on the treatment E and
covariates X, say sex, in a complicated way. Denote by P [T ≤ 1|E,X] the 1 year risk
of death for a person under treatment E with gender X. One could then compute
the expected 1-year risk of death in the population as:

E [P [T ≤ 1|E,X]] =P [T ≤ 1|E = placebo, X = male]P [E = placebo, X = male]
+ P [T ≤ 1|E = placebo, X = female]P [E = placebo, X = female]
+ P [T ≤ 1|E = active, X = male]P [E = active, X = male]
+ P [T ≤ 1|E = active, X = female]P [E = active, X = female]

i.e. the sum over all patient profiles of the risk under patient profile times the
frequency that this patient profile is met in the population.

3which follows from the law of total probability
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3 Statistical background

3.1 Terminology
An estimand is a quantity of interest to be estimated in a statistical analysis. It is
deterministic (i.e. a number) in frequentist statistics.

• in the coin example, the estimand could be the probability of landing on tail
(which equals 0.5 for a fair coin).

• other examples include "the 1-year risk of being diagnosed with long cancer"
or "the difference in probability of surviving at least a year between people
exposed to pollution (E = 1) and people non-exposed to pollution (E = 0)".
If we denote by ψ the estimand the previous sentences could be abreviated by
ψ = P [T ≤ 1,∆ = 1] or ψ = S(t|E = 1) −S(t|E = 0). In the latter case, if the
survival time follows an exponential distribution with rate 2 under pollution
and 1 otherwise, then ψ = exp(−2) − exp(−1) ≈ −0.2325:

An estimator is a method to deduce from the data at hand the value of the estimand
(typically under minimal distributional assumptions).

• the empirical average is an example of estimator: it sums the observations and
divide by the number of observations. Consider again the fair coin example,
and denote by X the random variable which takes value 1 if the coin lands on
tail and value 0 if the coin lands on head (X could be the earning of a gambling
game). Say we flip the coin 5 times and observe the following five realizations
of X: x1, x2, x3, x4, x5. The empirical average of X in this sample is

x = 1
5

5∑
i=1

xi = x1 + x2 + x3 + x4 + x5

5

• another commonly used estimator is maximum likelihood estimator (MLE)
which find values for the model parameters minimizing the discrepancy between
modeled values and observed values. This is what is used when doing linear
regression (lm in ), logistic regression (glm in ), or Poisson regression
(glm in ).

An estimate is the value provided by the estimator for a given dataset. It is often
represented by adding an hat to the estimand, e.g. ψ̂ and is stochastic as it will
fluctuate from dataset to dataset.

• following the fair coin example, if we observed head (x1 = 0), tail (x2 = 1), tail
(x3 = 1), head (x4 = 0), head (x5 = 0), the empirical average of X is:

x = 0 + 1 + 1 + 0 + 0
5 = 0.4
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• similarly, in the pollution example, had we been able to collect data we could
estimate the survival under pollution and free of pollution to estimate the pol-
lution effect. For instance with 10 individuals in each group, we may measure:

set.seed(12)
sample1.T0 <- round(rexp(10,1),3) ## no pollution
sample1.T1 <- round(rexp(10,2),3) ## pollution
rbind(sample1.T0,sample1.T1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
sample1.T0 2.189 0.636 0.117 2.857 1.817 0.283 3.930 4.224 1.264 0.628
sample1.T1 0.599 0.608 0.376 0.505 0.166 1.115 1.323 0.210 0.786 0.947

In absence of censoring, the survival in each group can be estimated by averaging
whether the survival time are greater than t:
mean(sample1.T1>1) - mean(sample1.T0>1)

[1] -0.4

These values are stochastic, i.e., dependent on the sample. Had we had different
observations we would have obtained different values:
set.seed(12)
sample2.T0 <- round(rexp(10000,1),3) ## pollution
sample2.T1 <- round(rexp(10000,2),3) ## no pollution
mean(sample2.T1>1) - mean(sample2.T0>1)

[1] -0.2363

• the estimate will get closer to the estimand as the number of observations
increases (provided certain assumptions, e.g. independent and identically dis-
tributed observations, no confounding, . . . ). See https://seeing-theory.
brown.edu/basic-probability/index.html#section2 for an illustration.
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3.2 Statistical inference
In previous section, we consider an (artificial) example where we wanted to assess
the effect of pollution on the 1-year risk of being diagnosed with long cancer. With
one sample (n=10 per group) we obtained effect of -0.4 while with another, much
larger, sample we obtained an effect of -0.2363. This variability, i.e. dependence of
the estimated treatment effect on the sample, makes us unsure whether the observed
negative effect is just a coincidence or would happen with most samples.

• to limit the number of incorrect claims, conclusions should be drawn not only
with respect to the estimate but also to the statistical uncertainty. For instance
one could use a test comparing proportion of events:

library(exact2x2)
## first sample
dp1 <- binomMeld.test(x1 = sum(sample1.T0>1), x2 = sum(sample1.T1>1),

n1 = length(sample1.T0), n2 = length(sample1.T1))
## second sample
dp2 <- binomMeld.test(x1 = sum(sample2.T0>1), x2 = sum(sample2.T1>1),

n1 = length(sample2.T0), n2 = length(sample2.T1))

M.res <- rbind(sample1 = c(dp1$estimate, dp1$conf.int,dp1$p.value),
sample2 = c(dp2$estimate, dp2$conf.int,dp2$p.value))

colnames(M.res) <- c("estimate","lower","upper","p.value")
M.res

estimate lower upper p.value
sample1 -0.4000 -0.7670161 0.1216111 0.16980235
sample2 -0.2363 -0.2479586 -0.2245869 0.00000002

Confidence intervals (CIs) can be understood as displaying the range of effects that
are compatible with the data - see (Greenland et al., 2016) for a formal definition.

• with sample 1, we see that an effect (in absolute value) as large as -0.767 and
as small as -0.12 are compatible with the data so no clear conclusion can be
drawn. Nevertheless we can exclude large positive (i.e. protective) effects.
With sample 2, the CI is narrower with values between 0.22 and 0.24 not only
showing evidence for a decreased survival but also quantifying it.

• Formally, if we were making many studies on pollution and compute each time
a 95% CI, then 95% of them will contain the estimand (i.e. we would only
be mistaken in 5% of the cases). See https://seeing-theory.brown.edu/
frequentist-inference/index.html#section2 for an interactive visualiza-
tion of the frequentist properties of confidence intervals. In practice this often
require certain assumptions to be met (e.g. independent observations, large
enough sample).
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• In any case, the width of the CIs reflects the statistical uncertainty: broad CIs
point toward insufficient or too noisy data4.

Typically one wishes to show the presence of an effect. To do so a study is set up
where the absence of this effect (null hypothesis) should be incompatible wiht the
measurements. P-values are then used to quantify the evidence against the null
hypothesis. A low p-value (typically below 0.05) indicates evidence against the null
hypothesis, i.e., typically evidence against no treatment effect i.e. evidence in favor
of a treatment effect. As mentionned in Greenland et al. (2016), this interpretation
implicitely require that modeling assumptions are correct but to keep things simple
we will assume this is the case during the course.

△! a large p-value does NOT indicate evidence for the null hypothesis, i.e. does
NOT indicate no effect. The above example illustrate this: in the first (small)
sample the p-value was 0.170 but that does NOT support no pollution effect.
Looking at the confidence interval we see rather large effects values compatible
with the data. See Greenland et al. (2016) for other common misconceptions.

3.3 Deriving estimators using the likelihood
The likelihood quantifies how likely it is to observe the data under the current model.
It is commonly used to estimate model parameters (say θ) and quantify the estima-
tion uncertainty. The main ideas are the following:

• define a statistical model, e.g. treatment modifies (multiplicatively) the sur-
vival probability.

• express the likelihood of the model (denoted L(θ)) i.e. relate the model pa-
rameters to the observed data

• estimate the model parameters by finding the value they should take to max-
imize the likelihood. This value is called the maximum likelihood estimate
(MLE) and denoted θ̂. This is often equivalent to finding the value where the
first derivative of the log-likelihood (denoted S(θ) = L′(θ)) is 0.

• estimate the estimation uncertainty by evaluating the second derivative of the
log-likelihood (denoted H(θ) = S ′(θ)). Intuitively, the sharper the second
derivative the easier it is to identify where the first derivative is 0 (compare
the blue and red curve in Figure 2). More precisely the standard error of the
estimator (denoted σ

θ̂
) equals the square root of the inverse of the opposite of

the second derivative of the log-likelihood
√

1
−H(θ̂)

4The width of the confidence intervals is often an interesting metric to discuss when asked
whether a study was sufficiently powered
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Figure 2: Log-likelihood and its first derivative (score) for m = 2 and n = 3 or m = 8
and n = 12

Consider a very simple example where we want to estimate the survival proba-
bility: π = P [Y = 1] (here we omit the reference to time to further simplify)

• the statistical model is P [Y = 1] = π and P [Y = 0] = 1 − π

• given that m patients died and n survived the likelihood is L(π) = (1 −π)mπn.
The log-likelihood is log (L(π)) = −m log(1 − π) + n log(π) whose values are
displayed in the left panel of Figure 2 for various values of π.

• its derivative is S(π) = − m
1−π

+ n
π

whose values are displayed in the right panel
of Figure 2 for various values of π. It equals 0 when π̂ = n

m+n
.

• taking one more derivative we obtain H(π) = − m
(1−π)2 − n

π2 = − m+n
π(1−π)

(
π

1−π
+

n
m+n

(1−2π)
π(1−π)

)
.

At the MLE this is equal to H(π̂) = − m+n
π̂(1−π̂)

(
π̂

1−π̂
+ π̂(1−2π̂)

π̂(1−π̂)

)
= − m+n

π̂(1−π̂) so

σ̂
θ̂

=
√

π̂(1−π̂)
m+n
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